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Verilog as HDL 
 

Verilog has a variety of constructs as part of it. All are aimed at providing a functionally tested 

and a verified design description for the target FPGA or ASIC. 

The language has a dual function – one fulfilling the need for a design description and the other 

fulfilling the need for verifying the design for functionality and timing constraints like 

propagation delay, critical path delay, slack, setup, and hold times. 

Levels of Design Description 
 

The components of the target design can be described at different levels with the help of the 

constructs in Verilog. 

In Verilog HDL a module can be defined using various levels of abstraction. There are four levels 

of abstraction in verilog. 

They are: 1. Circuit Level 2. Gate Level 3. Data Flow Level 4. Behavioral Level 

Circuit Level 
 

At the circuit level, a switch is the basic element with which digital circuits are built. Switches 

can be combined to form inverters and other gates at the next higher level of abstraction. 

Verilog has the basic MOS switches built into its constructs, which can be used to build basic 

circuits like inverters, basic logic gates, simple 1-bit dynamic and static memories. They can be 

used to build up larger designs to simulate at the circuit level, to design performance critical 

circuits. 

The below Figure1 shows the circuit of an inverter suitable for description with the switch level 

constructs of Verilog. 
 

 
 

Figure 1 CMOS inverter 



Gate Level 
 

At the next higher level of abstraction, design is carried out in terms of basic gates. All the basic 

gates are available as ready modules called “Primitives.” Each such primitive is defined in terms 

of its inputs and outputs. Primitives can be incorporated into design descriptions directly. Just 

as full physical hardware can be built using gates, the primitives can be used repeatedly and 

judiciously to build larger systems. 

Figure 2 shows an AND gate suitable for description using the gate primitive of Verilog. 
 

 

The gate level modeling or structural modeling as it is sometimes called is akin to building a 

digital circuit on a bread board, or on a PCB. One should know the structure of the design to 

build the model here. One can also build hierarchical circuits at this level. However, beyond 20 

to 30 of such gate primitives in a circuit, the design description becomes unwieldy; testing and 

debugging become laborious. 

Data Flow 
 

Data flow is the next higher level of abstraction. All possible operations on signals and variables 

are represented here in terms of assignments. All logic and algebraic operations are 

accommodated. The assignments define the continuous functioning of the concerned block. At 

the data flow level, signals are assigned through the data manipulating equations. All such 

assignments are concurrent in nature. The design descriptions are more compact than those at 

the gate level. 

Figure 3 shows an A-O-I relationship suitable for description with the Verilog constructs at the 

data flow level. 
 
 



 
 

Behavioral Level 
 

Behavioral level constitutes the highest level of design description; it is essentially at the system 

level itself. With the assignment possibilities, looping constructs and conditional branching 

possible, the design description essentially looks like a “C” program. 

A module can be implemented in terms of the design algorithm. The designer no need to have 

any knowledge of hardware implementation. 

The statements involved are “dense” in function. Compactness and the comprehensive nature 

of the design description make the development process fast and efficient. 

Figure 4 shows an A-O-I gate expressed in pseudo code suitable for description with the 

behavioral level constructs of Verilog. 

 

 
The Overall Design Structure in Verilog 

 

The possibilities of design description statements and assignments at different levels 

necessitate their accommodation in a mixed mode. In fact the design statements coexisting in a 

seamless manner within a design module is a significant characteristic of Verilog. Thus Verilog 

facilitates the mixing of the above-mentioned levels of design. A design built at data flow level 

can be instantiated to form a structural mode design. Data flow assignments can be 

incorporated in designs which are basically at behavioral level. 



Concurrency 
 

In an electronic circuit all the units are to be active and functioning concurrently. The voltages 

and currents in the different elements in the circuit can change simultaneously. In turn the logic 

levels too can change. Simulation of such a circuit in an HDL calls for concurrency of operation. 

A number of activities – may be spread over different modules – are to be run concurrently 

here. Verilog simulators are built to simulate concurrency. (This is in contrast to programs in the 

normal languages like C where execution is sequential.) 

Concurrency is achieved by proceeding with simulation in equal time steps. The time step is 

kept small enough to be negligible compared with the propagation delay values. All the 

activities scheduled at one time step are completed and then the simulator advances to the 

next time step and so on. The time step values refer to simulation time and not real time. One 

can redefine timescales to suit technology as and when necessary and carry out test runs. 

In some cases the circuit itself may demand sequential operation as with data transfer and 

memory-based operations. Only in such cases sequential operation is ensured by the 

appropriate usage of sequential constructs from Verilog HDL. 

Simulation and Synthesis 
 

The design that is specified and entered as described earlier is simulated for functionality and 

fully debugged. Translation of the debugged design into the corresponding hardware circuit 

(using an FPGA or an ASIC) is called “synthesis.” 

The tools available for synthesis relate more easily with the gate level and data flow level 

modules [Smith MJ]. The circuits realized from them are essentially direct translations of 

functions into circuit elements. 

In contrast many of the behavioral level constructs are not directly synthesizable; even if 

synthesized they are likely to yield relatively redundant or wrong hardware. The way out is to 

take the behavioral level modules and redo each of them at lower levels. The process is carried 

out successively with each of the behavioral level modules until practically the full design is 

available as a pack of modules at gate and data flow levels (more commonly called the “RTL 

level”). 



Programming Language Interface (PLI) 
 

PLI provides an active interface to a compiled Verilog module. The interface adds a new 

dimension to working with Verilog routines from a C platform. The key functions of the 

interface are as follows: 

 One can read data from a file and pass it to a Verilog module as input. Such data can be 

test vectors or other input data to the module. Similarly, variables in Verilog modules 

can be accessed and their values written to output devices.

 Delay values, logic values, etc., within a module can be accessed and altered.

 Blocks written in C language can be linked to Verilog modules.

MODULE 
 

Any Verilog program begins with a keyword – called a “module.” A module is the name given to 

any system considering it as a black box with input and output terminals as shown in Figure 1. 

The terminals of the module are referred to as ‘ports’. The ports attached to a module can be of 

three types: 

 

 
 input ports through which one gets entry into the module; they signify the input signal 

terminals of the module.

 output ports through which one exits the module; these signify the output 
signal terminals of the module.

 

 inout ports: These represent ports through which one gets entry into the 
module or exits the module; These are terminals through which signals are 
input to the module sometimes; at some other times signals are output from 
the module through these.

Whether a module has any of the above ports and how many of each type are present depend 
solely on the functional nature of the module. Thus one module may not have any port at all; 
another may have only input ports, while a third may have only output ports, and so on. 



All the constructs in Verilog are centered on the module. They define ways of building up, 
accessing, and using modules. The structure of modules and the mode of invoking them in a 
design are discussed here. 

 

A module comprises a number of “lexical tokens” arranged according to some predefined 
order. The possible tokens are of seven categories: 

 White spaces

 Comments

 Operators

 Numbers

 Strings

 Identifiers

 Keywords
 

The rules constraining the tokens and their sequencing will be dealt with as we progress. For 
the present let us consider modules. In Verilog any program which forms a design description is 
a “module.” Any program written to test a design description is also a “module.” The latter are 
often called as “stimulus modules” or “test benches.” A module used to do simulation has the 
form shown in Figure 2. Verilog takes the active statements appearing between the “module” 
statement and the “endmodule” statement and interprets all of them together as forming the 
body of the module. Whenever a module is invoked for testing or for incorporation into a 
bigger design module, the name of the module (“test” here) is used to identify it for the 
purpose. 

 
 



LANGUAGE CONSTRUCTS AND CONVENTIONS IN VERILOG 
 

Introduction 

The constructs and conventions make up a software language. A clear understanding and 
familiarity of these is essential for the mastery of the language. Verilog has its own constructs 
and conventions [IEEE, Sutherland]. In many respects they resemble those of C language 
[Gottfried]. 

Any source file in Verilog (as with any file in any other programming language) is made up of a 

number of ASCII characters. The characters are grouped into sets — referred to as “lexical 

tokens.” A lexical token in Verilog can be a single character or a group of characters. Verilog has 

7 types of lexical tokens- operators, keywords, identifiers, white spaces, comments, numbers, 

and strings. 

Case Sensitivity 
 

Verilog is a case-sensitive language like C. Thus sense, Sense, SENSE, sENse,… etc., are all 

related as different entities / quantities in Verilog. 

Keywords 
 

The keywords define the language constructs. A keyword signifies an activity to be carried out,  

initiated, or terminated. As such, a programmer cannot use a keyword for any purpose other 

than that it is intended for. All keywords in Verilog are in small letters and require to be used as 

such (since Verilog is a case-sensitive language). All keywords appear in the text in New Courier 

Bold-type letters. 

Examples 
 

module -- signifies the beginning of a module definition. 
endmodule -- signifies the end of a module definition. 
begin -- signifies the beginning of a block of statements. 
end -- signifies the end of a block of statements. 
if -- signifies a conditional activity to be checked 
while -- signifies a conditional activity to be carried out. 

 

Identifiers 
 

Any program requires blocks of statements, signals, etc., to be identified with an attached 
nametag. Such nametags are identifiers. It is good practice for us to use identifiers, closely 
related to the significance of variable, signal, block, etc., concerned. This eases understanding 
and debugging of any program. 
e.g., clock, enable, gate_1, . . . 



There are some restrictions in assigning identifier names. All characters of the alphabet or an 
underscore can be used as the first character. Subsequent characters can be of alphanumeric 
type, or the underscore (_), or the dollar ($) sign – for example 

 
name, _name. Name, name1, name_$, . . . -- all these are allowed as identifiers 

 

name aa -- not allowed as an identifier because of the blank ( “name” and “aa” are interpreted 
as two different identifiers) 

 

$name -- not allowed as an identifier because of the presence of “$” as the first character. 
1_name -- not allowed as an identifier, since the numeral “1” is the first character 

 

@name -- not allowed as an identifier because of the presence of the character “@”. 
A+b m not allowed as an identifier because of the presence of the character “+”. 

 
White Space Characters 

 
Blanks (\b), tabs (\t), newlines (\n), and formfeed form the white space characters in Verilog. In 

any design description the white space characters are included to improve readability. 

Functionally, they separate legal tokens. They are introduced between keywords, keyword and 

an identifier, between two identifiers, between identifiers and operator symbols, and so on. 

White space characters have significance only when they appear inside strings. 

Comments 
 

Comments can be inserted in the code for readability and documentation. There are two ways 
to write comments. A one-line comment starts with "//". Verilog skips from that point to the 
end of line. A multiple-line comment starts with "/*" and ends with "*/". Multiple-line 
comments cannot be nested. However, one-line comments can be embedded in multiple-line 
comments. 

 
a = b && c; // This is a one-line comment 

 
/* This is a multiple line 

comment */ 

/* This is /* an illegal */ comment */ 
 

/* This is //a legal comment */ 



Operators 
 

Operators are of three types: unary, binary, and ternary. Unary operators precede the operand.  
Binary operators appear between two operands. Ternary operators have two separate 
operators that separate three operands. 

 
a = ~ b; // ~ is a unary operator. b is the operand 

 

a = b && c; // && is a binary operator. b and c are operands 
 

a = b ? c : d; // ?: is a ternary operator. b, c and d are operands 
 

Number Specification 
 

There are two types of number specification in Verilog: sized and unsized. 
Sized numbers 
Sized numbers are represented as <size> '<base format> <number>. 

 

<size> is written only in decimal and specifies the number of bits in the number. Legal base 
formats are decimal ('d or 'D), hexadecimal ('h or 'H), binary ('b or 'B) and octal ('o or 'O). The 
number is specified as consecutive digits from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f. Only a  
subset of these digits is legal for a particular base. Uppercase letters are legal for number 
specification. 

 
4'b1111 // This is a 4-bit        binary number 

12'habc // This is a 12-bit hexadecimal number 
16'd255 // This is a 16-bit decimal number. 

 
Unsized numbers 

 

Numbers that are specified without a <base format> specification are decimal numbers by 
default. Numbers that are written without a <size> specification have a default number of bits 
that is simulator- and machine-specific (must be at least 32). 

 

23456 // This is a 32-bit 'hc3 // This is a 32-bit 'o21 // This is a 32-bit 

decimal number by default hexadecimal number octal number 

X or Z values 
 

Verilog has two symbols for unknown and high impedance values. These values are very 
important for modeling real circuits. An unknown value is denoted by an x. A high impedance 
value is denoted by z. 



12'h13x // This is a 12-bit hex number; 4 least significant bits unknown 

6'hx // This is a 6-bit hex number 

32'bz // This is a 32-bit high impedance number 
 

An x or z sets four bits for a number in the hexadecimal base, three bits for a number in the 
octal base, and one bit for a number in the binary base. If the most significant bit of a number is 
0, x, or z, the number is automatically extended to fill the most significant bits, respectively, 
with 0, x, or z. This makes it easy to assign x or z to whole vector. If the most significant digit is 
1, then it is also zero extended. 

 

Negative numbers 
 

Negative numbers can be specified by putting a minus sign before the size for a constant 
number. Size constants are always positive. It is illegal to have a minus sign between <base 
format> and <number>. An optional signed specifier can be added for signed arithmetic. 

 

-6'd3 // 8-bit negative number stored as 2's complement of 3 -6'sd3 // Used for performing 
signed integer math 4'd-2 // Illegal specification 

 
Underscore characters and question marks 

 
An underscore character "_" is allowed anywhere in a number except the first character. 
Underscore characters are allowed only to improve readability of numbers and are ignored by 
Verilog. 
A question mark "?" is the Verilog HDL alternative for z in the context of numbers. 

12'b1111_0000_1010 // Use of underline characters for readability 

4'b10?? // Equivalent of a 4'b10zz 
 

Strings 
 

A string is a sequence of characters that are enclosed by double quotes. The restriction on a 
string is that it must be contained on a single line, that is, without a carriage return. It cannot be 
on multiple lines. Strings are treated as a sequence of one-byte ASCII values. 

 

"Hello Verilog World" // is a string 

"a / b" // is a string 



Value Set or Logic Values 
 

Verilog supports four values and eight strengths to model the functionality of real hardware. 
The four value levels are listed in Table below. 

 

Value Level Condition in Hardware Circuits 

0 Logic zero, false condition 

1 Logic one, true condition 

x Unknown logic value 

Z High impedance, floating state 

 
Strengths 

 
The logic levels are also associated with strengths. In many digital circuits, multiple assignments 
are often combined to reduce silicon area or to reduce pin-outs. To facilitate this, one can 
assign strengths to logic levels. Verilog has eight strength levels – four of these are of the 
driving type, three are of capacitive type and one of the hi-Z type. 

 
In addition to logic values, strength levels are often used to resolve conflicts between drivers of 
different strengths in digital circuits. Value levels 0 and 1 can have the strength levels listed in 
Table below 

 

Strength Level Type Degree 

supply Driving strongest 

strong Driving  

 


pull riving 

large Storage 

weak Driving 

medium Storage 

small Storage 

highz High Impedance weakest 

 
 

If two signals of unequal strengths are driven on a wire, the stronger signal prevails. 
For example, if two signals of strength strong1 and weak0 contend, the result is resolved as a 
strong1. If two signals of equal strengths are driven on a wire, the result is unknown. If two 
signals of strength strong1 and strong0 conflict, the result is an x. Strength levels are 
particularly useful for accurate modeling of signal contention, MOS devices, dynamic MOS, and 
other low-level devices. 



Data Types 
 

The data handled in Verilog fall into two categories: 
(i) Net data type 
(ii) Variable data type 

 
The two types differ in the way they are used as well as with regard to their respective 
hardware structures. Data type of each variable or signal has to be declared prior to its use. The 
same is valid within the concerned block or module. 

 

Nets 
A net signifies a connection from one circuit unit to another. Such a net carries the value of the 
signal it is connected to and transmits to the circuit blocks connected to it. If the driving end of 
a net is left floating, the net goes to the high impedance state. A net can be specified in 
different ways. 
wire: It represents a simple wire doing an interconnection. Only one output is connected to a 
wire and is driven by that. 

 
tri:     It represents a simple signal line as a wire. Unlike the wire, a tri can be driven by more 
than one signal outputs. 
Nets are one-bit values by default unless they are declared explicitly as vectors. The terms wire 
and net are often used interchangeably. 

 

Variable Data Type 
 

A variable is an abstraction for a storage device. It can be declared through the keyword reg 
and stores the value of a logic level: 0, 1, x, or z. A net or wire connected to a reg takes on the  
value stored in the reg and can be used as input to other circuit elements. But the output of a 
circuit cannot be connected to a reg. The value stored in a reg is changed through a fresh 
assignment in the program. 
time, integer, real, and realtime are the other variable types of data; these are dealt with later. 

 

Time 
Verilog simulation is done with respect to simulation time. A special time register data type is 
used in Verilog to store simulation time. A time variable is declared with the keyword time. The 
width for time register data types is implementation-specific but is at least 64 bits. The system 
function $time is invoked to get the current simulation time. 

 
time save_sim_time; // Define a time variable save_sim_time initial 

save_sim_time = $time; // Save the current simulation time 



Scalars and Vectors 
 

Entities representing single bits — whether the bit is stored, changed, or transferred — are 
called “scalars.” Often multiple lines carry signals in a cluster – like data bus, address bus, and 
so on. Similarly, a group of regs stores a value, which may be assigned, changed, and handled 
together. The collection here is treated as a “vector.” 
Figure below illustrates the difference between a scalar and a vector. wr and rd are two scalar 
nets connecting two circuit blocks circuit1 and circuit2. b is a 4-bit-wide vector net connecting 
the same two blocks. b[0], b[1], b[2], and b[3] are the individual bits of vector b. They are “part 
vectors.” 

 

A vector reg or net is declared at the outset in a Verilog program and hence treated as such. 
The range of a vector is specified by a set of 2 digits (or expressions evaluating to a digit) with a  
colon in between the two. The combination is enclosed within square brackets. 

 

 
 

Examples: 

wire[3:0] a; /* a is a four bit vector of net type; the bits are designated as a[3], a[2], a[1] and 
a[0]. */ 

reg[2:0] b; /* b is a three bit vector of reg type; the bits are designated as b[2], b[1] and 
b[0]. */ 

reg[4:2] c; /* c is a three bit vector of reg type; the bits are designated as c[4], c[3] and c[2]. 
*/ 

wire[-2:2] d ; /* d is a 5 bit vector with individual bits designated as d[-2], d[-1], d[0], d[1] and 
d[2]. */ 



Whenever a range is not specified for a net or a reg, the same is treated as a scalar – a single bit 
quantity. In the range specification of a vector the most significant bit and the least significant 
bit can be assigned specific integer values. These can also be expressions evaluating to integer 
constants – positive or negative. 

Normally vectors – nets or regs – are treated as unsigned quantities. They have to be 
specifically declared as “signed” if so desired. 

 

Examples 
 

wire signed[4:0] num;// num is a vector in the range -16 to +15. 
 

reg signed [3:0] num_1; // num_1 is a vector in the range -8 to +7. 



Gate Level Modeling 
 

Introduction 
 

Digital designers are normally familiar with all the common logic gates, their symbols, and their 

working. Flip-flops are built from the logic gates. All other functionally complex and more 

involved circuits can also be built using the basic gates. All the basic gates are available as 

“Primitives” in Verilog. Primitives are generalized modules that already exist in Verilog [IEEE]. 

They can be instantiated directly in other modules. 

And Gate Primitive 
 

The AND gate primitive in Verilog is instantiated with the following statement: 

and g1 (O, I1, I2, . . ., In); 

Here ‘and’ is the keyword signifying an AND gate. g1 is the name assigned to the specific 

instantiation. O is the gate output; I1, I2, etc., are the gate inputs. The following are 

noteworthy: 

 The AND module has only one output. The first port in the argument list is the output 

port. 

 An AND gate instantiation can take any number of inputs — the upper limit is compiler- 

specific. 

 A name need not be necessarily assigned to the AND gate instantiation; this is true of all 

the gate primitives available in Verilog. 

Truth Table of AND Gate Primitive 
 

The truth table for a two-input AND gate is shown in Table below It can be directly extended to 

AND gate instantiations with multiple inputs. The following observations are in order here: 

Truth table of AND gate primitive 
 

 
 Input 1 

0 1 X z 

 

Input 2 

0 0 0 0 0 

1 0 1 X x 

x 0 x X x 

z 0 x X x 



 If any one of the inputs to the AND gate instantiation is in the 0 state, its output is also 
in the 0 state. It is irrespective of whether the other inputs are at the 0, 1, x or z state. 

 

 The output is at 1 state if and only if every one of the inputs is at 1 state. 
 

 For all other cases the output is at the x state. 
 

 Note that the output is never at the z state – the high impedance state. This is true of all 
other gate primitives as well. 

 
 

Module Structure 
 

In a general case a module can be more elaborate. A lot of flexibility is available in the 
definition of the body of the module. However, a few rules need to be followed: 

 

 The first statement of a module starts with the keyword module; it may be followed by 
the name of the module and the port list if any. 

 

 All the variables in the ports-list are to be identified as inputs, outputs, or inouts. The 
corresponding declarations have the form shown below: 

 
ƒ Input a1, a2; 
ƒ Output b1, b2; 
ƒ Inout c1, c2; 

 

The port-type declarations here follow the module declaration mentioned above. 
 

 The ports and the other variables used within the body of the module are to be 
identified as nets or registers with specific types in each case. The respective declaration 
statements follow the port-type declaration statements. 

 
Examples: 

 
wire a1, a2, c; 
reg b1, b2; 

 

The type declaration must necessarily precede the first use of any variable or signal in the 
module. 

 The executable body of the module follows the declaration indicated above. 
 

 The last statement in any module definition is the keyword “endmodule”. 
 

 Comments can appear anywhere in the module definition. 



 
 

Other Gate Primitives 
 

All other basic gates are also available as primitives in Verilog. Details of the facilities and 
instantiations in each case are given in Table below. The following points are noteworthy here: 

 

 In all cases of instantiations, one need not necessarily assign a name to the 
instantiation. It need be done only when felt necessary – say for clarity of circuit 
description. 

 

 In all the cases the output port(s) is (are) declared first and the input port(s) is (are) 
declared subsequently. 

 

 The buffer and the inverter have only one input each. They can have any number of 
outputs; the upper limit is compiler-specific. All other gates have one output each but 
can have any number of inputs; the upper limit is again compiler-specific. 

 
Table for Basic gate primitives in Verilog with details 

 

Gate Mode of instantiation Output port(s) Input port(s) 

AND and ga ( o, i1, i2, . . . i8); o i1, i2, . . 

OR or gr ( o, i1, i2, . . . i8); o i1, i2, . . 

NAND nand gna ( o, i1, i2, . . . i8); o i1, i2, . . 

NOR nor gnr ( o, i1, i2, . . . i8); o i1, i2, . . 

XOR xor gxr ( o, i1, i2, . . . i8); o i1, i2, . . 

XNOR xnor gxn ( o, i1, i2, . . . i8); o i1, i2, . . 

BUF buf gb ( o1, o2, …. i); o1, o2, o3, . . i 

NOT not gn (o1, o2, o3, . . . i); o1, o2, o3, . . i 



Example for a typical A-O-I gate circuit 
 

The commonly used A-O-I gate is shown in Figure 1 for a simple case. The module and the test 

bench for the same are given in Figure 2. The circuit has been realized here by instantiating the 

AND and NOR gate primitives. The names of signals and gates used in the instantiations in the 

module of Figure 2 remain the same as those in the circuit of Figure 1. The module aoi_gate in  

the figure has input and output ports since it describes a circuit with signal inputs and an 

output. The module aoi_st is a stimulus module. It generates inputs to the aoi_gate module and 

gets its output. It has no input or output ports. 
 

 
/*module for the aoi-gate of figure 1 instantiating the gate primitives – fig 2*/ 

module aoi_gate(o,a1,a2,b1,b2); 

input a1,a2,b1,b2;  // a1,a2,b1,b2 form the input //ports of the module 

output o; //o is the single output port of the module 

wire o1,o2; //o1 and o2 are intermediate signals //within the module 

and g1(o1,a1,a2); //The AND gate primitive has two and g2(o2,b1,b2); 

// instantiations with assigned //names g1 & g2. 
 

nor g3(o,o1,o2); //The nor gate has one instantiation with assigned name g3. 

endmodule 

//Test-bench for the aoi_gate above 

module aoi_st; 

reg a1,a2,b1,b2; 

 
//specific values will be assigned to a1,a2,b1, // and b2 and these connected 

//to input ports of the gate insatntiations; 



//hence these variables are declared as reg 

wire o; 

initial 

begin 

a1 = 0; 

a2 = 0; 

b1 = 0; 

b2 = 0; 

#3 a1 = 1; 

#3 a2 = 1; 

#3 b1 = 1; 

#3 b2 = 0; 

#3 a1 = 1; 

#3 a2 = 0; 

#3 b1 = 0; 

end 

initial #100 $stop;//the simulation ends after //running for 100 tu's. 

initial $monitor($time , " o = %b , a1 = %b , a2 = %b , b1 = %b ,b2 = %b ",o,a1,a2,b1,b2); 

aoi_gate gg(o,a1,a2,b1,b2); 

endmodule 
 
 

Tri-State Gates 
 

Four types of tri-state buffers are available in Verilog as primitives. Their outputs can be turned 
ON or OFF by a control signal. The direct buffer is instantiated as 
Bufif1 nn (out, in, control); 

 

The symbol of the buffer is shown in Figure 
1. We have 

 out as the single output variable 

 in as the single input variable and 
 control as the single control signal 

variable. 

When 
control = 1, 
out = in. 

 
When 
control = 0, 
out=tri-stated 



out is cut off from the input and tri-stated. The output, input and control signals should 
appear in the instantiation in the same order as above. Details of bufif1 as well as the other 
tri-state type primitives are shown in Table 1. 
In all the cases shown in Table 1, out is the output; in is the input, and control, the control  
variable. 

 

 

Array of Instances of Primitives 
 

The primitives available in Verilog can also be instantiated as arrays. A judicious use of such 
array instantiations often leads to compact design descriptions. A typical array instantiation 
has the form 

 

and gate [7 : 4 ] (a, b, c); 
 
where a, b, and c are to be 4 bit vectors. The above instantiation is equivalent to combining 
the following 4 instantiations: 

 

and gate [7] (a[3], b[3], c[3]), gate [6] (a[2], b[2], c[2]), gate [5] (a[1], b[1], c[1]), gate [4] 
(a[0], b[0], c[0]); 

 
The assignment of different bits of input vectors to respective gates is implicit in the basic 
declaration itself. A more general instantiation of array type has the form 

 

and gate[mm : nn](a, b, c); 



where mm and nn can be expressions involving previously defined parameters, integers and 
algebra with them. The range for the gate is 1+ (mm-nn); mm and nn do not have 
restrictions of sign; either can be larger than the other. 

 
 

Gate Delays 
 

Until now, we described circuits without any delays (i.e., zero delay). In real circuits, logic 

gates have delays associated with them. Gate delays allow the Verilog user to specify delays 

through the logic circuits. Pin-to-pin delays can also be specified in Verilog. 

Rise, Fall, and Turn-off Delays 
 

There are three types of delays from the inputs to the output of a primitive gate. 

Rise delay 

The rise delay is associated with a gate output transition to a 1 from another value. 
 
 

Fall delay 

The fall delay is associated with a gate output transition to a 0 from another value. 
 
 

Turn-off delay 

The turn-off delay is associated with a gate output transition to the high impedance 

value (z) from another value. 

If the value changes to x, the minimum of the three delays is considered. 
 

Three types of delay specifications are allowed. If only one delay is specified, this 

value is used for all transitions. If two delays are specified, they refer to the rise and 

fall delay values. The turn-off delay is the minimum of the two delays. If all three 

delays are specified, they refer to rise, fall, and turn-off delay values. If no delays are 

specified, the default value is zero. 



Example--Types of Delay Specification 
 

//Delay of delay_time for all transitions 
and #(delay_time) a1(out, i1, i2); 

 

// Rise and Fall Delay Specification. 

and #(rise_val, fall_val) a2(out, i1, i2); 

// Rise, Fall, and Turn-off Delay Specification 
 

bufif0 #(rise_val, fall_val, turnoff_val) b1 (out, in, control); 
 
 

Examples of delay specification are shown below. 
 

and #(5) a1(out, i1, i2); //Delay of 5 for all transitions and #(4,6) a2(out, i1, i2); // Rise 
= 4, Fall = 6 

 

bufif0 #(3,4,5) b1 (out, in, control); // Rise = 3, Fall = 4, Turn-off = 5 

Dataflow Modeling 

Introduction 

For small circuits, the gate-level modeling approach works very well because the 
number of gates is limited and the designer can instantiate and connect every gate 

individually. Also, gate-level modeling is very intuitive to a designer with a basic 

knowledge of digital logic design. However, in complex designs the number of gates is 
very large. Thus, designers can design more effectively if they concentrate on 

implementing the function at a level of abstraction higher than gate level. Dataflow 

modeling provides a powerful way to implement a design. Verilog allows a circuit to 

be designed in terms of the data flow between registers and how a design processes 

data rather than instantiation of individual gates. Later in this chapter, the benefits of 

dataflow modeling will become more apparent. 

With gate densities on chips increasing rapidly, dataflow modeling has assumed great 

importance. No longer can companies devote engineering resources to handcrafting 
entire designs with gates. Currently, automated tools are used to create a gate-level 

circuit from a dataflow design description. This process is called logic synthesis. 

Dataflow modeling has become a popular design approach as logic synthesis tools 

have become sophisticated. This approach allows the designer to concentrate on 

optimizing the circuit in terms of data flow. For maximum flexibility in the design 
process, designers typically use a Verilog description style that combines the concepts 

of gate-level, data flow, and behavioral design. In the digital design community, the 

term RTL (Register Transfer Level) design is commonly used for a combination of 

dataflow modeling and behavioral modeling. 



 

Continuous Assignments 

A continuous assignment is the most basic statement in dataflow modeling, used to 

drive a value onto a net. This assignment replaces gates in the description of the 

circuit and describes the circuit at a higher level of abstraction. The assignment 

statement starts with the keyword assign. The syntax of an assign statement is as 

follows. 

 

 
continuous_assign ::= assign [ drive_strength ] [ delay3 ] 

list_of_net_assignments ; 

 
list_of_net_assignments ::= net_assignment { , net_assignment } 

net_assignment ::= net_lvalue = expression 

Notice that drive strength is optional and can be specified in terms of strength levels 

The default value for drive strength is strong1 and strong0. The delay value is also 

optional and can be used to specify delay on the assign statement. This is like 

specifying delays for gates. Delay specification is discussed in this chapter. 

Continuous assignments have the following characteristics: 

1. The left hand side of an assignment must always be a scalar or vector net or a 

concatenation of scalar and vector nets. It cannot be a scalar or vector register. 

2. Continuous assignments are always active. The assignment expression is 

evaluated as soon as one of the right-hand-side operands changes and the value is 

assigned to the left-hand-side net. 
3. The operands on the right-hand side can be registers or nets or function calls. 
Registers or nets can be scalars or vectors. 

4. Delay values can be specified for assignments in terms of time units. Delay values are 
used to control the time when a net is assigned the evaluated value. This feature is 
similar to specifying delays for gates. It is very useful in modeling timing behavior in real 
circuits. 

Examples of Continuous Assignment 

Continuous assign. out is a net. i1 and i2 are nets. assign out = i1 

& i2; 

Continuous assign for vector nets. addr is a 16-bit vector net 

addr1 and addr2 are 16-bit vector registers. 

assign addr[15:0] = addr1_bits[15:0] ^ addr2_bits[15:0]; 



Concatenation. Left-hand side is a concatenation of a scalar 

net and a vector net. 

assign {c_out, sum[3:0]} = a[3:0] + b[3:0] + c_in; 
 
 

Implicit Continuous Assignment 

Instead of declaring a net and then writing a continuous assignment on the net, 

Verilog provides a shortcut by which a continuous assignment can be placed on a 

net when it is declared. There can be only one implicit declaration assignment per 

net because a net is declared only once. 

In the example below, an implicit continuous assignment is contrasted with a 

regular continuous assignment. 

 
 

//Regular continuous assignment 

wire out; 

assign out = in1 & in2; 
 
 

//Same effect is achieved by an implicit continuous assignment wire out = 

in1 & in2; 

 

Implicit Net Declaration 

If a signal name is used to the left of the continuous assignment, an implicit net 

declaration will be inferred for that signal name. If the net is connected to a module 

port, the width of the inferred net is equal to the width of the module port. 

wire i1, i2; 

 
assign out = i1 & i2; //Note that out was not declared as a wire 

 
//but an implicit wire declaration for out //is done 

by the simulator 

Delays 

Delay values control the time between the change in a right-hand-side operand and 

when the new value is assigned to the left-hand side. Three ways of specifying delays 



in continuous assignment statements are regular assignment delay, implicit 

continuous assignment delay, and net declaration delay. 

Regular Assignment Delay 

The first method is to assign a delay value in a continuous assignment statement. 

The delay value is specified after the keyword assign. Any change in values of in1 or 

in2 will result in a delay of 10 time units before recomputation of the expression in1 

& in2, and the result will be assigned to out. If in1 or in2 changes value again before 

10 time units when the result propagates to out, the values of in1 and in2 at the 

time of recomputation are considered. This property is called inertial delay. An input 

pulse that is shorter than the delay of the assignment statement does not propagate 

to the output. 

 

 
assign #10 out = in1 & in2; // Delay in a continuous assign 

 

\ 
 

Figure: Delays 
 
 

The above waveform is generated by simulating the above assign statement. It 

shows the delay on signal out. Note the following change: 

 
 

When signals in1 and in2 go high at time 20, out goes to a high 10 time units 

later (time = 30). 

 
When in1 goes low at 60, out changes to low at 70. 

 

However, in1 changes to high at 80, but it goes down to low before 10 time 

units have elapsed. 



Hence, at the time of recomputation, 10 units after time 80, in1 is 0. Thus, out gets the 

value 0. A pulse of width less than the specified assignment delay is not propagated to 

the output. 

 
Implicit Continuous Assignment Delay 

An equivalent method is to use an implicit continuous assignment to specify both a 

delay and an assignment on the net. 

 
 

//implicit continuous assignment delay 

wire #10 out = in1 & in2; 

//same as 

wire out; 

assign #10 out = in1 & in2; 

The declaration above has the same effect as defining a wire out and 

declaring a continuous assignment on out. 

Net Declaration Delay 

A delay can be specified on a net when it is declared without putting a continuous 

assignment on the net. If a delay is specified on a net out, then any value change 

applied to the net out is delayed accordingly. Net declaration delays can also be used 

in gate-level modeling. 

//Net Delays 

wire # 10 out; 

assign out = in1 & in2; 
 
 

//The above statement has the same effect as the following. 

wire out; 

assign #10 out = in1 & in2; 



Expressions, Operators, and Operands 

Dataflow modeling describes the design in terms of expressions instead of 

primitive gates. Expressions, operators, and operands form the basis of 

dataflow modeling. 

Expressions 

Expressions are constructs that combine operators and operands to produce a result. 

Examples of expressions. Combines operands and operators a ^ b 
 

addr1[20:17] + addr2[20:17] in1 | in2 ; 
 
 

Operands 

Some constructs will take only certain types of operands. Operands can be 

constants, integers, real numbers, nets, registers, times, bit-select (one bit of vector 

net or a vector register), part-select (selected bits of the vector net or register 

vector), and memories or function calls (functions are discussed later). 

 

 
integer count, final_count; 

 

final_count = count + 1;//count is an integer operand 
 
 

real a, b, c; 

 
c = a - b; //a and b are real operands 

 
 

reg [15:0] reg1, reg2; 

reg [3:0] reg_out; 

reg_out = reg1[3:0] ^ reg2[3:0];//reg1[3:0] and reg2[3:0] are //part-select 

register operands 
 
 

reg ret_value; 

 
ret_value = calculate_parity(A, B);//calculate_parity is a //function 

type operand 



Operators 

Operators act on the operands to produce desired results. Verilog provides various 

types of operators. 

 
 

d1 && d2 // && is an operator on operands d1 and d2 !a[0] 

// ! is an operator on operand a[0] 

 
B >> 1 // >> is an operator on operands B and 1 

 
Operator Types 

Verilog provides many different operator types. Operators can be arithmetic, logical, 

relational, equality, bitwise, reduction, shift, concatenation, or conditional. Some of 

these operators are similar to the operators used in the C programming language. 

Each operator type is denoted by a symbol. The following table shows the complete 

listing of operator symbols classified by category. 

Table: Operator Types and Symbols 
 

 

Operator Type Operator Symbol Operation Performed Number of Operands 

 
 
 
 

 
Arithmetic 

* multiply two 

/ divide two 

+ add two 

 
- 

 
subtract 

 
two 

% modulus two 

** power (exponent) two 

 
 

Logical 

! logical negation one 

&& logical and two 

|| logical or two 

 > greater than two 

 



 
 

Relational 

< less than two 

 
>= 

 
greater than or equal 

 
two 

<= less than or equal two 

 
 
 

Equality 

== equality two 

!= inequality two 

 
=== 

 
case equality 

 
two 

!== case inequality two 

 
 
 
 
 

 

 
 
 

Bitwise 

~ bitwise negation one 

& bitwise and two 

| bitwise or two 

^ bitwise xor two 

^~ or ~^ bitwise xnor two 

 
 
 
 

 
Reduction 

& reduction and one 

~& reduction nand one 

| reduction or one 

 
~| 

 
reduction nor 

 
one 

^ reduction xor one 

^~ or ~^ reduction xnor one 



    

 
 
 

Shift 

>> Right shift Two 

<< Left shift Two 

 
>>> 

 
Arithmetic right shift 

 
Two 

<<< Arithmetic left shift Two 

Concatenation { } Concatenation Any number 

Replication { { } } Replication Any number 

Conditional ?: Conditional Three 

 

Let us now discuss each operator type in detail. 
 

 
Arithmetic Operators 

There are two types of arithmetic operators: binary and unary. 

Binary operators 

Binary arithmetic operators are multiply (*), divide (/), add (+), subtract (-), power 

(**), and modulus (%). Binary operators take two operands. 

 
 

A = 4'b0011; B = 4'b0100; // A and B are register vectors D = 6; E = 

4; F=2// D and E are integers 

 
A * B // Multiply A and B. Evaluates to 4'b1100 

 

D / E // Divide D by E. Evaluates to 1. Truncates any fractional part. A + B // Add A 
and B. Evaluates to 4'b0111 



B - A // Subtract A from B. Evaluates to 4'b0001 F = E ** 

F; //E to the power F, yields 16 

 
 

If any operand bit has a value x, then the result of the entire expression is x. This 

seems intuitive because if an operand value is not known precisely, the result 

should be an unknown. 

 

 
in1 = 4'b101x; 

in2 = 4'b1010; 

sum = in1 + in2; // sum will be evaluated to the value 4'bx 

Modulus operators produce the remainder from the division of two numbers. 

They operate similarly to the modulus operator in the C programming 

language. 

 
13 % 3 // Evaluates to 1  

16 % 4 // Evaluates to 0  

-7 % 2 // Evaluates to -1, takes sign of the first operand 

7 % -2 // Evaluates to +1, takes sign of the first operand 

 
 

Unary operators 

The operators + and - can also work as unary operators. They are used to specify 

the positive or negative sign of the operand. Unary + or ? operators have higher 

precedence than the binary + or ? operators. 

-4 // Negative 4 

 
+5 // Positive 5 

Negative numbers are represented as 2's complement internally in Verilog. It is 

advisable to use negative numbers only of the type integer or real in expressions. 

Designers should avoid negative numbers of the type <sss> '<base> <nnn> in 

expressions because they are converted to unsigned 2's complement numbers and 

hence yield unexpected results. 



//Advisable to use integer or real numbers -10 / 

5// Evaluates to -2 

 
//Do not use numbers of type <sss> '<base> <nnn> 

-'d10 / 5// Is equivalent (2's complement of 10)/5 = (232 - 10)/5 

where 32 is the default machine word width. 

This evaluates to an incorrect and unexpected result 

 
Logical Operators 

Logical operators are logical-and (&&), logical-or (||) and logical- not (!). Operators 

&& and || are binary operators. Operator ! is a unary operator. Logical operators 

follow these conditions: 

Logical operators always evaluate to a 1-bit value, 0 (false), 1 (true), or x 

ambiguous).If an operand is not equal to zero, it is equivalent to a logical 1 (true 

condition). If it is 01equal to zero, it is equivalent to a logical 0 (false condition). 

If any operand bit is x or z, it is equivalent to x (ambiguous condition) and is 

normally treated by simulators as a false condition.Logical operators take 

variables or expressions as operands.Use of parentheses to group logical 

operations is highly recommended to improve readability. Also, the user does 

not have to remember the precedence of operators. 

 
Logical operations A = 3; 

B = 0; 

A && B // Evaluates to 0. Equivalent to (logical-1 && logical-0) A || B // 

Evaluates to 1. Equivalent to (logical-1 || logical-0) !A// Evaluates to 0. 
Equivalent to not(logical-1) 

 
!B// Evaluates to 1. Equivalent to not(logical-0) 

 
 

Unknowns 
 

A = 2'b0x; B = 2'b10; 

 
A && B // Evaluates to x. Equivalent to (x && logical 1) 



// Expressions 

 
(a == 2) && (b == 3) // Evaluates to 1 if both a == 2 and b == 3 are true. 

// Evaluates to 0 if either is false. 
 

 
Relational Operators 

Relational operators are greater-than (>), less-than (<), greater-than-or-equal-to (>=), 

and less-than-or-equal-to (<=). If relational operators are used in an expression, the 

expression returns a logical value of 1 if the expression is true and 0 if the expression is 

false. If there are any unknown or z bits in the operands, the expression takes a value x. 

These operators function exactly as the corresponding operators in the C programming 

language. 

A = 4, B = 3 
 

X = 4'b1010, Y = 4'b1101, Z = 4'b1xxx 

 
A <= B // Evaluates to a logical 0 

A > B // Evaluates to a logical 1 

Y >= X // Evaluates to a logical 1 

Y < Z // Evaluates to an x 

 

Equality Operators 

Equality operators are logical equality (==), logical inequality (!=), case equality (===), 

and case inequality (!==) . When used in an expression, equality operators return logical 

value 1 if true, 0 if false. These operators compare the two operands bit by bit, with 

zero filling if the operands are of unequal length. Table below lists the operators. 

It is important to note the difference between the logical equality operators (==, !=) and 
case equality operators (===, !==). The logical equality operators (==, !=) will yield an x if 

either operand has x or z in its bits. However, the case equality operators ( ===, !== ) 

compare both operands bit by bit and compare all bits, including x and z. The result is 1 if 

the operands match exactly, including x and z bits. The result is 0 if the operands do not 

match exactly. Case equality operators never result in an x. 



Table: Equality Operators 
 
 
 

 

Expression 

 

Description 

Possible Logical 

 
Value 

a == b a equal to b, result unknown if x or z in a or b 0, 1, x 

 

a != b 

a not equal to b, result unknown if x or z in a or  

0, 1, x 
 
B 

a === b a equal to b, including x and z 0, 1 

a !== b a not equal to b, including x and z 0, 1 

 

 

A = 4, B = 3 
 

X = 4'b1010, Y = 4'b1101 

Z = 4'b1xxz, M = 4'b1xxz, N = 4'b1xxx 

A == B // Results in logical 0 

X != Y // Results in logical 1 

X == Z // Results in x 

Z === M // Results in logical 1 (all bits match, including x and z) 

 
Z === N // Results in logical 0 (least significant bit does not match) M !== N // 

Results in logical 1 



Bitwise Operators 

Bitwise operators are negation (~), and(&), or (|), xor (^), xnor (^~, ~^). Bitwise 

operators perform a bit-by-bit operation on two operands. They take each bit in one 

operand and perform the operation with the corresponding bit in the other operand. 

If one operand is shorter than the other, it will be bit-extended with zeros to match 

the length of the longer operand. Logic tables for the bit-by-bit computation are 

shown in Table. A z is treated as an x in a bitwise operation. The exception is the 

unary negation operator (~), which takes only one operand and operates on the bits 

of the single operand. 

Table: Truth Tables for Bitwise Operators 
 
 

 

 
Examples of bitwise operators are shown below. 

 

 
X = 4'b1010, Y = 4'b1101 

Z = 4'b10x1 

~X // Negation. Result is 4'b0101 
 

X & Y // Bitwise and. Result is 4'b1000 

X | Y // Bitwise or. Result is 4'b1111 



X ^ Y    // Bitwise xor. Result is 4'b0111 

X ^~ Y // Bitwise xnor. Result is 4'b1000 

X & Z // Result is 4'b10x0 

 
It is important to distinguish bitwise operators ~, &, and | from logical operators !, 

&&, ||. Logical operators always yield a logical value 0, 1, x, whereas bitwise 

operators yield a bit-by-bit value. Logical operators perform a logical operation, not a 

bit-by-bit operation. 

 

 
// X = 4'b1010, Y = 4'b0000 

 

 
X | Y // bitwise operation. Result is 4'b1010 

 

X || Y // logical operation. Equivalent to 1 || 0. Result is 1. 
 

 
Reduction Operators 

Reduction operators are and (&), nand (~&), or (|), nor (~|), xor (^), and xnor (~^, ^~). 

Reduction operators take only one operand. Reduction operators perform a bitwise 

operation on a single vector operand and yield a 1-bit result. The difference is that 

bitwise operations are on bits from two different operands, whereas reduction 

operations are on the bits of the same operand. Reduction operators work bit by bit 
from right to left. Reduction nand, reduction nor, and reduction xnor are computed 

by inverting the result of the reduction and, reduction or, and reduction xor, 

respectively. 

 

 
// X = 4'b1010 

 

 
&X //Equivalent to 1 & 0 & 1 & 0. Results in 1'b0 

|X//Equivalent to 1 | 0 | 1 | 0. Results in 1'b1 

^X//Equivalent to 1 ^ 0 ^ 1 ^ 0. Results in 1'b0 

 
//A reduction xor or xnor can be used for even or odd parity 

//generation of a vector. 



The use of a similar set of symbols for logical (!, &&, ||), bitwise (~, &, |, ^), and 

reduction operators (&, |, ^) is somewhat confusing initially. The difference lies in 

the number of operands each operator takes and also the value of results 

computed. 

Shift Operators 

Shift operators are right shift ( >>), left shift (<<), arithmetic right shift (>>>), and 

arithmetic left shift (<<<). Regular shift operators shift a vector operand to the right 

or the left by a specified number of bits. The operands are the vector and the 

number of bits to shift. When the bits are shifted, the vacant bit positions are filled 

with zeros. Shift operations do not wrap around. Arithmetic shift operators use the 

context of the expression to determine the value with which to fill the vacated bits. 

 

 
// X = 4'b1100 

 

 
Y = X >> 1; //Y is 4'b0110. Shift right 1 bit. 0 filled in MSB position. 

Y = X << 1; //Y is 4'b1000. Shift left 1 bit. 0 filled in LSB position. 

Y = X << 2; //Y is 4'b0000. Shift left 2 bits. 
 
 

integer a, b, c; //Signed data types 

a = 0; 

b = -10; // 00111...10110 binary 

 
c = a + (b >>> 3); //Results in -2 decimal, due to arithmetic shift 

Shift operators are useful because they allow the designer to model shift operations, 

shift-and-add algorithms for multiplication, and other useful operations. 

 
 

Concatenation Operator 

The concatenation operator ( {, } ) provides a mechanism to append multiple 

operands. The operands must be sized. Unsized operands are not allowed because 

the size of each operand must be known for computation of the size of the result. 

Concatenations are expressed as operands within braces, with commas separating 

the operands. Operands can be scalar nets or registers, vector nets or registers, bit- 

select, part-select, or sized constants. 



// A = 1'b1, B = 2'b00, C = 2'b10, D = 3'b110 

Y = {B , C} // Result Y is 4'b0010  

Y = {A , B , C , D , 3'b001} // Result Y is 11'b10010110001 

Y = {A , B[0], C[1]} // Result Y is 3'b101 
 

 

Replication Operator 

Repetitive concatenation of the same number can be expressed by using a 

replication constant. A replication constant specifies how many times to replicate 

the number inside the brackets ( { } ). 

reg A; 
 

reg [1:0] B, C; 

 
reg [2:0] D; 

 
A = 1'b1; B = 2'b00; C = 2'b10; D = 3'b110; 

 
 

Y = { 4{A} } // Result Y is 4'b1111 
 

Y = { 4{A} , 2{B} } // Result Y is 8'b11110000 

 
Y = { 4{A} , 2{B} , C } // Result Y is 8'b1111000010 

 

 
Conditional Operator 

The conditional operator(?:) takes three operands. 

Usage: condition_expr ? true_expr : false_expr ; 

The condition expression (condition_expr) is first evaluated. If the result is true 

(logical 1), then the true_expr is evaluated. If the result is false (logical 0), then the 

false_expr is evaluated. If the result is x (ambiguous), then both true_expr and false_ 

expr are evaluated and their results are compared, bit by bit, to return for each bit  

position an x if the bits are different and the value of the bits if they are the same. 

The action of a conditional operator is similar to a multiplexer. Alternately, it can 

be compared to the if-else expression. 



 
 

 
 
 
 

Conditional operators are frequently used in dataflow modeling to model 

conditional assignments. The conditional expression acts as a switching control. 

//model functionality of a tristate buffer 
 

assign addr_bus = drive_enable ? addr_out : 36'bz; 
 
 

//model functionality of a 2-to-1 mux 

assign out = control ? in1 : in0; 

 

Conditional operations can be nested. Each true_expr or false_expr can itself be a 

conditional operation. In the example that follows, convince yourself that (A==3) 

and control are the two select signals of 4-to-1 multiplexer with n, m, y, x as the 

inputs and out as the output signal. 

 

 
assign out = (A == 3) ? ( control ? x : y ): ( control ? m : n) ; 

 

 
Operator Precedence 

Having discussed the operators, it is now important to discuss operator precedence. 

If no parentheses are used to separate parts of expressions, Verilog enforces the 

following precedence. Operators listed in Table are in order from highest precedence 

to lowest precedence. It is recommended that parentheses be used to separate 

expressions except in case of unary operators or when there is no ambiguity. 



Table: Operator Precedence 
 

Operators Operator Symbols Precedence 

 

Unary 
 

+ - ! ~ 
Highest 
precedence 

Multiply, Divide, Modulus * / %  

Add, Subtract + -  

Shift << >>  

Relational < <= > >=  

Equality == != === !==  

 
 

Reduction 

&, ~&  

^ ^~ 

|, ~| 

 

Logical 

&&  

 
|| 

Conditional ?: Lowest precedence 



 

 
Introduction 

 Behavioral Modeling 

 

Behavioral modeling is the highest level of abstraction in the Verilog HDL. The other modeling 
techniques are relatively detailed. They require some knowledge of how hardware or hardware 
signals work. The abstraction in this modeling is as simple as writing the logic in C language. This 
is a very powerful abstraction technique. All that a designer need is the algorithm of the design, 
which is the basic information for any design. 

 

Most of the behavioral modeling is done using two important constructs: initial and always. All 
the other behavioral statements appear only inside these two structured procedure constructs. 

 
The Initial Construct 

 
The statements which come under the initial construct constitute the initial block. The initial 
block is executed only once in the simulation, at time 0. If there is more than one initial block, 
then all the initial blocks are executed concurrently. The initial construct is used as follows: 
initial 
begin 
reset=1'b0; 
clk=1'b1; 
end 
or 
initial 
clk = 1'b1; 

 

In the first initial block there are more than one statements hence they are written between 
begin and end. If there is only one statement then there is no need to put begin and end. 

 

The always construct 
 

The statements which come under the always construct constitute the always block. The always 
block starts at time 0, and keeps on executing all the simulation time. It works like a infinite loop. 
It is generally used to model a functionality that is continuously repeated. 

 

always 
#5clk=~clk; 
initial 
clk = 1'b0; 

 

The above code generates a clock signal clk, with a time period of 10 units. The initial blocks 
initiates the clk value to 0 at time 0. Then after every 5 units of time it toggled, hence we get a 



time period of 10 units. This is the way in general used to generate a clock signal for use in test 
benches. 

 
always@(posedge clk, negedge reset) 
begin 
a = b + c; 

d = 1'b1; 
end 

 
In the above example, the always block will be executed whenever there is a positive edge in the 
clk signal, or there is negative edge in the reset signal. This type of always is generally used in 
implement a FSM, which has a reset signal. 

 
 

always @(b,c,d) 
begin 

a = ( b + c )*d; 
e = b | c; 

end 
 

In the above example, whenever there is a change in b, c, or d the always block will be executed. 
Here the list b, c, and d is called the sensitivity list. 

 

In the Verilog 2000, we can replace always @(b,c,d) with always @(*), it is equivalent to include 
all input signals, used in the always block. This is very useful when always blocks are used for 
implementing the combination logic. 

 

OPERATIONS AND ASSIGNMENTS: 
 

The design description at the behavioral level is done through a sequence of assignments. These 
are called ‘procedural assignments’ – in contrast to the continuous assignments at the data flow 
level. Though it appears similar to the assignments at the data flow level discussed in the last 
chapter, the two are different. The procedure assignment is characterized by the following: 

 

 The assignment is done through the “=” symbol (or the “<=” symbol) as was the case with 
the continuous assignment earlier. 

 An operation is carried out and the result assigned  through the “=” operator to an 
operand specified on the left side of the “=” sign – for example,N = ~N; 

 Here the content of reg N is complemented and assigned to the reg N itself. The 
assignment is essentially an updating activity. 

 The operation on the right can involve operands and operators. The operands can be of 
different types – logical variables, numbers – real or integer and so on. 



wait CONSTRUCT 
The wait construct makes the simulator wait for the specified expression to be true before 
proceeding with the following assignment or group of assignments. Its syntax has the form 

wait (alpha) assignment1; 
alpha can be a variable, the value on a net, or an expression involving them. If alpha is an 
expression, it is evaluated; if true, assignment1 is carried out. One can also have a group of 
assignments within a block in place of assignment1. 
Example: 

wait(clk) #2 a = b; 
The simulator waits for the clock to be high and then assigns b to a with a delay of 2 ns. The 
assignment will be refreshed as long as the clk remains high. 
The below code shows one version of the up-down counter module along with a test bench. It is 
a modification of the up down counter uses a wait construct. It has an enable input En. The 
counter is active and counts only when En = 1. 
Verilog code: 
module ctr_wt(a,clk,N,En); 
input clk,En; 
input[3:0]N; 
output[3:0]a; 
reg[3:0]a; 
initial a=4'b1111; 
always 
begin 
wait(En) 
@(negedge clk) 
a=(a==N)?4'b0000:a+1'b1; 
end 
endmodule 
Test Bench 
module tst_ctr_wt; 
reg clk,En; 
reg[3:0]N; 
wire[3:0]a; 
ctr_wt c1(a,clk,N,En); 
initial 
begin 
clk=0;N=4'b1111;En=1'b0;#5 En=1'b1;#20 En=1'b0; 
end 
always 
#2 clk=~clk; 
initial #35 $stop; 
initial $monitor($time,"clk=%h,En=%b,N=%b,a=%b",clk,En,N,a,); 
endmodule 



Procedural Assignments 
 

Procedural assignments are used for updating reg, integer, time, real, realtime, and memory data 
types. The variables will retain their values until updated by another procedural assignment. 
There is a significant difference between procedural assignments and continuous assignments. 
Continuous assignments drive nets and are evaluated and updated whenever an input operand 
changes value. Whereas procedural assignments update the value of variables under the control 
of the procedural flow constructs that surround them. 

 

The LHS of a procedural assignment could be: 
 

 reg, integer, real, realtime, or time data type. 

 Bit-select of a reg, integer, or time data type, rest of the bits are untouched. 

 Part-select of a reg, integer, or time data type, rest of the bits are untouched. 

 Memory word. 
Concatenation of any of the previous four forms can be specified. 
When the RHS evaluates to fewer bits than the LHS, then if the right-hand side is signed, it will be 
sign-extended to the size of the left-hand side. 

 

There are two types of procedural assignments: blocking and non-blocking assignments. 
 

Blocking assignments: A blocking assignment statements are executed in the order they are 
specified in a sequential block. The execution of next statement begins only after the completion 
of the present blocking assignments. A blocking assignment will not block the execution of the 
next statement in a parallel block. The blocking assignments are made using the operator =. 

 
 

initial 
begin 

a = 1; 
b = #5 2; 
c = #2 3; 

end 
 

In the above example, a is assigned value 1 at time 0, and b is assigned value 2 at time 5, and c is 
assigned value 3 at time 7. 

 
Non-blocking assignments: The nonblocking assignment allows assignment scheduling without 
blocking the procedural flow. The nonblocking assignment statement can be used whenever 
several variable assignments within the same time step can be made without regard to order or 
dependence upon each other. Non-blocking assignments are made using the operator <=. 
Note: <= is same for less than or equal to operator, so whenever it appears in a expression it is 
considered to be comparison operator and not as non-blocking assignment. 



 

initial 
begin 

a <= 1; 
b <= #5 2; 
c <= #2 3; 

end 
 

In the above example, a is assigned value 1 at time 0, and b is assigned value 2 at time 5, and c is 
assigned value 3 at time 2 (because all the statements execution starts at time 0, as they are non- 
blocking assignments. 

 
 
 

Conditional (if-else) Statement 
 

The condition (if-else) statement is used to make a decision whether a statement is executed or 
not. The keywords if and else are used to make conditional statement. The conditional statement 
can appear in the following forms. 

 
 

if ( condition_1 ) 
statement_1; 

 

if ( condition_2 ) 
statement_2; 

else 
statement_3; 

 
if ( condition_3 ) 

statement_4; 
else if ( condition_4 ) 

statement_5; 
else 

statement_6; 
 

if ( condition_5 ) 
begin 

statement_7; 
statement_8; 

end 
else 
begin 

statement_9; 



statement_10; 
end 

 
Conditional (if-else) statement usage is similar to that if-else statement of C programming 
language, except that parenthesis are replaced by begin and end. 

 

Case Statement 
 

The case statement is a multi-way decision statement that tests whether an expression matches 
one of the expressions and branches accordingly. Keywords case and endcase are used to make a 
case statement. The case statement syntax is as follows. 

 
 

case (expression) 
case_item_1: statement_1; 
case_item_2: statement_2; 
case_item_3: statement_3; 
... 
... 
default: default_statement; 

endcase 
 

If there are multiple statements under a single match, then they are grouped using begin, and 
end keywords. The default item is optional. 

 

Case statement with don't cares: casez and casex 
 

casez treats high-impedance values (z) as don't cares. casex treats both high-impedance (z) and 
unknown (x) values as don't cares. Don't-care values (z values for casez, z and x values for casex) 
in any bit of either the case expression or the case items shall be treated as don't-care conditions 
during the comparison, and that bit position shall not be considered. The don't cares are 
represented using the ? mark. 



Loop Statements 
 

There are four types of looping statements in Verilog: 
 

forever 
repeat 
while 
for 

 

Forever Loop 
 

Forever loop is defined using the keyword forever, which Continuously executes a statement. It 
terminates when the system task $finish is called. A forever loop can also be ended by using the 
disable statement. 

 
 

initial 
begin 

clk = 1'b0; 
forever #5 clk = ~clk; 

end 
 

In the above example, a clock signal with time period 10 units of time is obtained. 
 
 
 

Repeat Loop 
 

Repeat loop is defined using the keyword repeat. The repeat loop block continuously executes 
the block for a given number of times. The number of times the loop executes can be mention 
using a constant or an expression. The expression is calculated only once, before the start of loop 
and not during the execution of the loop. If the expression value turns out to be z or x, then it is 
treated as zero, and hence loop block is not executed at all. 

 

initial 
begin 

a = 10; 
b = 5; 
b <= #10 10; 
i = 0; 
repeat(a*b) 
begin 

$display("repeat in progress"); 
#1 i = i + 1; 

http://only-vlsi.blogspot.com/2008/01/behavioral-modeling.html#forever
http://only-vlsi.blogspot.com/2008/01/behavioral-modeling.html#repeat
http://only-vlsi.blogspot.com/2008/01/behavioral-modeling.html#while
http://only-vlsi.blogspot.com/2008/01/behavioral-modeling.html#for


end 
end 

 
In the above example the loop block is executed only 50 times, and not 100 times. 
It calculates (a*b) at the beginning, and uses that value only. 

 
 
 
 
 

While Loop 
 

The while loop is defined using the keyword while. The while loop contains an expression. The 
loop continues until the expression is true. It terminates when the expression is false. If the 
calculated value of expression is z or x, it is treated as a false. The value of expression is 
calculated each time before starting the loop. All the statements (if more than one) are 
mentioned in blocks which begins and ends with keyword begin and end keywords. 

 
initial 
begin 

a = 20; 
i = 0; 
while (i < a) 
begin 
$display("%d",i); 
i = i + 1; 
a = a - 1; 
end 

end 
 

In the above example the loop executes for 10 times. (Observe that a is decrementing by one and 
i is incrementing by one, so loop terminated when both i and a become 10). 

 
For Loop 

 
The For loop is defined using the keyword for. The execution of for loop block is controlled by a 
three step process, as follows: 

 
Executes an assignment, normally used to initialize a variable that controls the number of times 
the for block is executed. 
Evaluates an expression, if the result is false or z or x, the for-loop shall terminate, and if it is true, 
the for-loop shall execute its block. 
Executes an assignment normally used to modify the value of the loop-control variable and then 
repeats with second step. 



Note that the first step is executed only once. 
 

initial 
begin 

a = 20; 
for (i = 0; i < a; i = i + 1, a = a - 1) 
$display("%d",i); 

end 
 

The above example produces the same result as the example used to illustrate the functionality 
of the while loop. 

 

Examples: 
 

1. Implementation of a 4x1 multiplexer. 
 
 

module mux4_1 (out, in0, in1, in2, in3, s0, s1); 

output out; 

// out is declared as reg, as default is wire 

reg out; 

// out is declared as reg, because we will 
// do a procedural assignment to it. 

input in0, in1, in2, in3, s0, s1; 

// always @(*) is equivalent to 
// always @( in0, in1, in2, in3, s0, s1 ) 

 
always @(*) 
begin 
case ({s1,s0}) 

2'b00: out = in0; 
2'b01: out = in1; 
2'b10: out = in2; 
2'b11: out = in3; 
default: out = 1'bx; 

endcase 
end 
endmodule 



 

2. Implementation of a full adder. 

module full_adder (sum, c_out, in0, in1, c_in); 

output sum, c_out; 
reg sum, c_out 

input in0, in1, c_in; 

always @(*) 
{c_out, sum} = in0 + in1 + c_in; 

endmodule 

3. Implementation of a 8-bit binary counter. 

module ( count, reset, clk ); 

output [7:0] count; 
reg [7:0] count; 

input reset, clk; 

// consider reset as active low signal 
 

always @( posedge clk, negedge reset) 
begin 
if(reset == 1'b0) 

count <= 8'h00; 
else 

count <= count + 8'h01; 
end 

 
endmodule 

 

Implementation of a 8-bit counter is a very good example, which explains the advantage of 
behavioral modeling. Just imagine how difficult it will be implementing a 8-bit counter using gate- 
level modeling. 
In the above example the incrementation occurs on every positive edge of the clock. When count 
becomes 8'hFF, the next increment will make it 8'h00, hence there is no need of any modulus 
operator. Reset signal is active low. 



Block Statements 
Block statements are used to group two or more statements together, so that they act as one 
statement. There are two types of blocks: 

 

 Sequential block. 

 Parallel block. 
Sequential block: 
The sequential block is defined using the keywords begin and end. The procedural statements in 
sequential block will be executed sequentially in the given order. In sequential block delay values 
for each statement shall be treated relative to the simulation time of the execution of the 
previous statement. The control will pass out of the block after the execution of last statement. 

 

Parallel block: 
The parallel block is defined using the keywords fork and join. The procedural statements in 
parallel block will be executed concurrently. In parallel block delay values for each statement are 
considered to be relative to the simulation time of entering the block. The delay control can be 
used to provide time-ordering for procedural assignments. 
The control shall pass out of the block after the execution of the last time-ordered statement. 
Note that blocks can be   nested.   The   sequential   and   parallel   blocks   can   be   mixed. 
Block names: 
All the blocks can be named, by adding : block_name after the keyword begin or fork. 
The advantages of naming a block are: 
It allows to declare local variables, which can be accessed by using hierarchical name referencing. 
They can be disabled using the disable statement (disable block_name;). 



 

 
Introduction 

 
SWITCH LEVEL MODELING 

In today’s environment the MOS transistor is the basic element around which a VLSI is built.  
Designers familiar with logic gates and their configurations at the circuit level may choose to do 
their designs using MOS transistors. 
Verilog has the provision to do the design description at the switch level using such MOS 
transistors. 
Switch level modeling forms the basic level of modeling digital circuits. 
The switches are available as primitives in Verilog; they are central to design description at this 
level. Basic gates can be defined in terms of such switches. By repeated and successive 
instantiation of such switches, more involved circuits can be modeled – on the same lines as 
was done with the gate level primitives. 

 

BASIC TRANSISTOR SWITCHES 
 

Consider an NMOS transistor of the depletion type. When used in a digital circuit, it can be in 
one of three modes: 

 VG < VS where VG and VS are the gate and source voltages with respect to the drain: 
The transistor is OFF and offers very high impedance across the source and the drain. It 
is in the z state. 

 VG = VS: The transistor is in the active region. It presents a resistance between the 
source and the drain. The value depends on the technology. Such a resistive state of the 
transistor can be modeled in Verilog. A transistor in this mode can be represented as a 
resistance in Verilog – as pull1 or pull0 depending on whether the drain is connected to 
supply1 or source is connected to supply0. 

 VG > VS: The transistor is fully turned on. It presents very low resistance between the 
source and drain. 

 An enhanced-mode NMOS transistor also has the above three modes of operation. 
  It is OFF when VG = VS. It is moderately ON or in the active region when VG is slightly 

greater than VS, representing a resistive (pull1 or pull0) mode of operation. When VG is 
sufficiently greater than VS, the transistor is in the on state representing very low 
resistance. Similar modes are possible for the PMOS transistor also. 

 

Basic Switch Primitive 
 

Different switch primitives are available in Verilog. 
Consider an nmos switch. A typical instantiation has the form 

nmos (out, in, control); 
nmos – a keyword – represents an NMOS transistor functioning as a switch. 
The switch has three terminals – in, out, and control. 
NMOS transistor symbol shown in below figure 1 with three terminals- 



When the control input is at 1 (high) state, the switch is on. It connects the input lead to the 
output side and offers zero impedance. 
When the control input is low, the switch is OFF and output is left floating (z state). 
If the control is in the z or the x state, output may take corresponding values. 

 
The keyword pmos represents a PMOS transistor functioning as a switch. 
The PMOS switch has three terminals (see Figure 2). 
A typical instantiation of the switch has the form 

pmos (out, in, control); 
When the control is at 1 (high) state, the switch is off. Output is left floating. 
When control is at 0 (low) state, the switch is on, input is connected to output, and output is at 
the same state as input. 

 

Resistive Switches 
 

nmos and pmos represent switches of low impedance in the on-state. rnmos and rpmos 
represent the resistive counterparts of these respectively. Typical instantiations have the form 

rnmos (output1, input1, control1); 
rpmos (output2, input2, control2); 

The rnmos if the control1 input is at 1 (high) state, the switch is ON and functions as a definite 
resistance. It connects input1 to output1 through a resistance. When control1 is at the 0 (low) 
state, the switch is OFF and leaves output1 floating. 
The rpmos switch is ON when control2 is at 0 (low) state. It inserts a definite resistance 
between the input and the output signals but retains the signal value. 

 

rpmos and rnmos are resistive switches, they reduce the signal strength when in the on state. 
The reduced strength is mostly one level below the original strength. 
The rpmos and rnmos switches function as unidirectional switches; the signal flow is from the 
input to the output side. 

 
pullup and pulldown 

 
A MOS transistor functions as a resistive element when in the active state. Realization of 
resistance in this form takes less silicon area in the IC as compared to a resistance realized 
directly. pullup and pulldown represent such resistive elements. 

 

A typical instantiation here has the form 
pullup (x); 

Here the net x is pulled up to the supply1 through a resistance. Similarly, the instantiation 
 

pulldown (y); 
pulls y down to the supply0 level through a resistance. The pullup and pulldown primitives can 
be used as loads for switches or to connect the unused input ports to VCC or GND, respectively. 
They can also form loads of switches in logic circuits. 



The default strengths for pullup and pulldown are pull1 and pull0 respectively. One can also 
specify strength values for the respective nets. For example, 

 
pullup (strong1) (x) 

 
specifies a resistive pullup of net x to supply1. One can also assign names to the pullup and 
pulldown primitives. Thus 

 

pullup (strong1) rs(x) 
 

represents an instantiation of pullup designated rs having strength strong1. 
 
 

CMOS SWITCH 
 

A CMOS switch is formed by connecting a PMOS and an NMOS switch in parallel – the input 
leads are connected together on the one side and the output leads are connected together on 
the other side. Figure 10.15 shows the switch so formed. It has two control inputs: 

 N_control turns ON the NMOS transistor and keeps it ON when it is in the 1 state. 

 P_control turns ON the PMOS transistor and keeps it ON when it is in the 0 state. 
 
 

 
The CMOS switch is instantiated as shown below. 
cmos csw (out, in, N_control, P_control ); 

 
Significance of the different terms is as follows: 
cmos: The keyword for the switch instantiation 
csw: Name assigned to the switch in the instantiation 
out: Name assigned to the output variable in the instantiation 
in: Name assigned to the input variable in the instantiation 
N_control: Name assigned to the control variable of the NMOS transistor in the instantiation 
P_control: Name assigned to the control variable of the PMOS transistor in the instantiation 



BI-DIRECTIONAL GATES 
 

Verilog has a set of primitives for bi-directional switches as well. They connect the nets on 
either side when ON and isolate them when OFF. The signal flow can be in either direction. 
None of the continuous-type assignments at higher levels dealt with so far has a functionality 
equivalent to the bi-directional gates. There are six types of bi-directional gates. 

 tran rtran 

 tranif1 rtanif1 

 tranif0 rtranif0 
tran and rtran 
The tran gate is a bi-directional gate of two ports. When instantiated, it connects the two ports 
directly. Thus the instantiation 

 

tran (s1, s2); 

 
connects the signal lines s1 and s2. Either line can be input, inout or output. 
rtran is the resistive counterpart of tran. 

 

tranif1 and rtranif1 
tranif1 is a bi-directional switch turned ON/OFF through a control line. It is in the ON-state 
when the control signal is at 1 (high) state. When the control line is at state 0 (low), the switch 
is in the OFF state. A typical instantiation has the form 

 
tranif1 (s1, s2, c ); 

 

Here c is the control line. If c=1, s1 and s2 are connected and signal transmission can be in 
either direction. 
rtranif1 is the resistive counterpart of tranif1. It is instantiated in an identical manner. 

 

tranif0 and rtranif0 
tranif0 and rtranif0 are again bi-directional switches. The switch is OFF if the control line is in 
the 1 (high) state, and it is ON when the control line is in the 0 (low) state. A typical 
instantiation has the form 

 

tranif0 (s1, s2, c); 
 

With the above instantiation, if c = 0, s1 and s2 are connected and signal transmission can be in 
either direction. If c = 1, the switch is OFF and s1 and s2 are isolated from each other. 
rtranif0 is the resistive counterpart of tranif0. 



INSTANTIATIONS WITH STRENGTHS AND DELAYS 
 

Propagation delays can be specified for switch primitives on the same lines as was done with 
the gate primitives in Chapter 5. For example, an NMOS switch instantiated as 

 
nmos g1 (out, in, ctrl ); 

 

has no delay associated with it. The instantiation 

nmos (delay1) g2 (out, in, ctrl ); 

has delay1 as the delay for the output to rise, fall, and turn OFF. The instantiation 

nmos (delay_r, delay_f) g3 (out, in, ctrl ); 

has delay_r as the rise-time for the output. delay_f is the fall-time for the output. The turn-off 
time is zero. The instantiation 

 
nmos (delay_r, delay_f, delay_o) g4 (out, in, ctrl ); 

 
has delay_r as the rise-time for the output. delay_f is the fall-time for the output delay_o is the 
time to turn OFF when the control signal ctrl goes from 0 to 1. Delays can be assigned to the 
other uni-directional gates (rcmos, pmos, rpmos, cmos, and rcmos) in a similar manner. Bi- 
directional switches do not delay transmission – their rise- and fall-times are zero. They can 
have only turn-on and turn-off delays associated with them. tran has no delay associated with 
it. 

 

tranif1 (delay_r, delay_f) g5 (out, in, ctrl ); 
represents an instantiation of the controlled bi-directional switch. When control changes from 
0 to 1, the switch turns on with a delay of delay_r. When control changes from 1 to 0, the 
switch turns off with a delay of delay_f. 

 
transif1 (delay0) g2 (out, in, ctrl ); 

 

represents an instantiation with delay0 as the delay for the switch to turn on when control  
changes from 0 to 1, with the same delay for it to turn off when control changes from 1 to 0. 
When a delay value is not specified in an instantiation, the turn-on and turn-off are considered 
to be ideal that is, instantaneous. Delay values similar to the above illustrations can be 
associated with rtranif1, tranif0, and rtranif0 as well. 



INSTANTIATIONS WITH STRENGTHS AND DELAYS 
 

In the most general form of instantiation, strength values and delay values can be combined. 
For example, the instantiation 

 
nmos (strong1, strong0) (delay_r, delay_f, delay_o ) gg (s1, s2, ctrl) ; 

means the following: 

 It has strength strong0 when in the low state and strength strong1when in the 
high state. 

 

 When output changes state from low to high, it has a delay time of delay_r. 
 

 When the output changes state from high to low, it has a delay time of delay_f. 
 

 When output turns-off it has a turn-off delay time of delay _o. 
 

rnmos, pmos, and rpmos switches too can be instantiated in the general form in the same 
manner. The general instantiation for the bi-directional gates too can be done similarly. 



SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES 

 
A number of facilities in Verilog relate to the management of simulation; starting and stopping of 

simulation, selectively monitoring the activities, testing the design for timing constraints, etc., are 

amongst them. Although a variety of such constructs is available in Verilog. 

 
PARAMETERS 

Verilog defines parameter as a constant value that is declared within structure of module. The 

constant value signifies timing values, range of variables, wires e.t.c. 

The parameter values can be specified and changed to suit the design environment or test 

environment. Such changes are effected and frozen at instantiation. 

The assigned values cannot change during testing or synthesis. 

 
Two types of parameters are of use in modules: specparam and defparam. 

Specparam : Parameters related to timings, time delays, rise and fall times, etc., are technology- 

specific and used during simulation. Parameter values can be assigned or overridden with the 

keyword “specparam” preceding the assignments. 

Defparam: Parameters related to design, bus width, and register size are of a different category. They 

are related to the size or dimension of a specific design; they are technology-independent. 

Assignment or overriding is with assignments following the keyword “defparam”. 

 
Timing-Related Parameters 

The constructs associated with parameters are discussed here through specific design or test 

modules. 

Example: Module of a half-adder with delays assigned to the output transitions; a test bench is 

also included in the figure. 

module ha_1(s,ca,a,b); 

input a,b; output s,ca; 

xor #(1,2) (s,a,b); 

and #(3,4) (ca,a,b); 

endmodule 

 
//test-bench 

module tstha; 

reg a,b; wire s,ca; 

ha_1 hh(s,ca,a,b); 

initial 

begin 



a=0;b=0; 

end 

always 

begin 

#5 a=1;b=0; 

#5 a=0;b=1; 

#5 a=1;b=1; 

#5 a=0;b=0; 

end 

initial $monitor($time , " a = %b , b = %b ,out carry = %b , outsum = %b ",a,b,ca,s); 

initial #30 $stop; 

endmodule 

 
Parameter Declarations and Assignments 

Declaration of parameters in a design as well as assignments to them can be effected using the 

keyword “Parameter.” A declaration has the form 

parameter alpha = a, beta = b; 

Where 

 parameter is the keyword, 

 alpha and beta are the names assigned to two parameters and 

 a, b are values assigned to alpha and beta, respectively. 

In general a and b can be constant expressions. The parameter values can be overridden during 

instantiation but cannot be changed during the run-time. If a parameter assignment is made through 

the keyword “localparam,” its value cannot be overridden. 



PATH DELAYS 

The delay between source pin (input or inout) and destination pin (ouput or inout) of module is called 

module path delay. 

Verilog has the provision to specify and check delays associated with total paths – from any input to 

any output of a module. Such paths and delays are at the chip or system level. They are referred to as 

“module path delays”. 

Constructs available make room for specifying their paths and assigning delay values to them – 

separately or together. 

 
Specify Blocks 

Module paths are specified and values assigned to their delays through specify blocks. They are used 

to specify rise time, fall time, path delays pulse widths, and the like. A “specify” block can have the 

form shown in Figure 

specify 

specparam rise_time = 5, fall_time = 6; 

(a =>b) = (rise_time, fall_time); 

(c => d) = (6, 7); 

endspecify 

 
The block starts with the keyword “specify” and ends with the keyword “endspecify”. Specify blocks 

can appear anywhere within a module. 

 
Module Paths 

Module Path delays are assigned in Verilog within the keywords specify and endspecify. The 

statements within these keywords constitute a specify block. 

Module paths can be specified in different ways inside a specify block. 

Parallel connection 

Every path delay statement has a source field and a destination field. 

A parallel connection is specified by the symbol => and is used as shown below. 

Usage: ( <source_field> => <destination_field>) = <delay_value>; 

In a parallel connection, each bit in source field connects to its corresponding bit in the destination 

field. 

If the source and the destination fields are vectors, they must have the same number of bits; 

otherwise, there is a mismatch. Thus, a parallel connection specifies delays from each bit in source to 

each bit in destination. 

Example: Parallel Connection 

(a => out) = 9; //bit-to-bit connection. Both a and out are single-bit 
// vector connection. Both a and out are 4-bit vectors a[2:0], out[2:0] a is source field, out is 
destination field. 



// for three bit-to-bit connection statements. 
(a[0] => out[0]) = 9; 

(a[1] => out[1]) = 9; 
(a[2] => out[2]) = 9; 

 

 

//illegal connection. a[4:0] is a 5-bit vector, out[3:0] is 4-bit. 
//Mismatch between bit width of source and destination fields 
(a => out) = 9; //bit width does not match. 

Full connection 
A full connection is specified by the symbol *> and is used as shown below. 

Usage: ( <source_field> *> <destination_field>) = <delay_value>; 
In a full connection, each bit in the source field connects to every bit in the destination field. If the 
source and the destination are vectors, then they need not have the same number of bits. A full 
connection describes the delay between each bit of the source and every bit in the destination. 

Example: 
Figure below illustrates a case of all possible paths from 
a 2-bit vector A to another 2-bit vector B; the specification implies 4 paths. 

 
 
 
 
We can write the module M with pin-to-pin 
delays, using specify blocks as follows: 

 

// Parallel connection 
 

module M (out, a, b, c, d); 
output out; 
input a, b, c, d; 
wire e, f; 
//Specify block with path delay statements 

specify 
(a => out) = 9; 
(b => out) = 9; 
(c => out) = 11; 
(d => out) = 11; 
endspecify 

 
//gate instantiations 
and a1(e, a, b); 

and a2(f, c, d); 
and a3(out, e, f); 
endmodule 

 
//Full Connection 

 
module M (out, a, b, c, d); 
output out; 
input a, b, c, d; 
wire e, f; 
specify 
(a,b *> out) = 9; 
(c,d *> out) = 11; 
endspecify 

and a1(e, a, b); 
and a2(f, c, d); 
and a3(out, e, f); 
endmodule 



MODULE PARAMETERS 
Module parameters are associated with size of bus, register, memory, ALU, and so on. They can be 
specified within the concerned module but their value can be altered during instantiation. The 
alterations can be brought about through assignments made with defparam. Such defparam 
assignments can appear anywhere in a module. 

 

Example 
The parameter msb specifies the ALU size –– consistently in the input and the output vectors of the 

ALU. The size assignment has been made separately through the assignment statement 

parameter msb = 3; 

The ALU module with its size declared as a parameter. 

module alu (d, co, a, b, f,cci); 

parameter msb=3; 
output [msb:0] d; output co; 
wire[msb:0]d; 

input cci; 
input [msb : 0 ] a, b; 
input [1 : 0] f; 
specify 
(a,b=>d)=(1,2); 
(a,b,cci*>co)=1; 
endspecify 
assign {co,d}= (f==2'b00)?(a+b+cci):((f==2'b01)?(a-b):((f==2'b10)?{1'bz,a^b}:{1'bz,~a})); 
endmodule 



SYSTEM TASKS AND FUNCTIONS 

Verilog has a number of System Tasks and Functions defined in the LRM (language reference manual). 

They are for taking output from simulation, control simulation, debugging design modules, testing modules for 

specifications, etc. 

A “$” sign preceding a word or a word group signifies a system task or a system function. 

 
Output Tasks 

A number of system tasks are available to output values of variables and selected messages, etc., on the 

monitor. Out of these $monitor and $display tasks have been extensively used. 

Display Tasks 

The $display task, whenever encountered, displays the arguments in the desired format; and the display 

advances to a new line. 

$strobe Task: 

When a variable or a set of variables is sampled and its value displayed, the $strobe task can be used; it senses 

the value of the specified variables and displays them. 

The $strobe task is executed as the last activity in the concerned time step. It is useful to check for specific 

activities and debug modules. 

Example: 

initial #9 $strobe ("at time %t, di=%b, do=%b", $time, di, do); 

$monitor Task: 

$monitor task is activated and displays the arguments specified whenever any of the arguments changes. 

$stop and $finish Tasks: 

The $stop task suspends simulation. The compiled design remains active; simulation can be resumed through 

commands available in the simulator. 

In contrast $finish stops simulation, closes the simulation environment, and reverts to the operating system. 

$random Function: 

A set of random number generator functions are available as system functions. 
One can start with a seed number (optional) and generate a random number repeatedly. Such random 
number sequences can be fruitfully used for testing. 



Compiler directives 
 

Compiler directives are special commands, beginning with ‘, that affect the operation of the Verilog 

simulator. 

 
Time Scale 

`timescale specifies the time unit and time precision. A time unit of 10 ns means a time expressed as 

say #2.3 will have a delay of 23.0 ns. Time precision specifies how delay values are to be rounded off 

during simulation. Valid time units include s, ms, us (μs), ns, ps, fs. 

Only 1, 10 or 100 are valid integers for specifying time units or precision. It also determines the 

displayed time units in display commands like $display. 

Syntax 

`timescale time_unit / time_precision; 

Examples 

`timescale 1 ns/1 ps // unit =1ns, precision=1/1000ns 

`timescale 1 ns /100 ps // time unit = 1ns; precision = 1/10ns; 

 
`define 

 

A macro is an identifier that represents a string of text. Macros are defined with the directive `define, 
and are invoked with the quoted macro name as shown in the example. Verilog compiliers will 
substitute the string for the macro name before starting compilation. Many people prefer to use 
macros instead of parameters. 

The define directive in Verilog is similar to #define in c-language. 
Syntax 
`define macro_name text_string; 
. . . `macro_name . . . 
Example 
`define add_lsb a[7:0] + b[7:0] 
`define N 8 // Word length 
wire [`N -1:0] S; 

assign S = 'add_lsb; // assign S = a[7:0] + b[7:0]; 
 

Include Directive 
Include is used to include the contents of a text file at the point in the current file where the include 
directive is. The include directive is similar to the C/C++ include directive. 

Syntax 
`include file_name; 

 

Example 

module x; 
`include “dclr.v”; // contents of file “dclr,v” are put here 



USER-DEFINED PRIMITIVES (UDP): 
The primitives available in Verilog are all of the gate or switch types. Verilog has the provision for the 
user to define primitives –called “user defined primitive (UDP)” and use them. 
The designers occasionally like to use their own custom-built primitives when developing a design. 
Verilog provides the ability to define User- Defined Primitives (UDP). These primitives are self- 
contained and do not instantiate other modules or primitives. UDPs are instantiated exactly like gate- 
level primitives. 
UDPs are basically of two types –combinational and sequential. A combinational UDP is used to define 
a combinational scalar function and a sequential UDP for a sequential function. 

 

Combinational UDPs: 
A combinational UDP accepts a set of scalar inputs and gives a scalar output. An inout declaration is  
not supported by a UDP. The UDP definition is on par with that of a module; that is, it is defined 
independently like a module and can be used in any other module. 

 

primitive udp_and(out, a, b); 
output out; 
input a, b; 
table 

// a b: Out; 
0 0: 0; 

0 1: 0; 
1 0: 0; 
1 1: 1; 

endtable 
endprimitive 

 

Sequential UDPs: 
Any sequential circuit has a set of possible states. When it is in one of the specified states, the next 
state to be taken is described as a function of the input logic variables and the present state. A 
sequential UDP can accommodate all these. 

 

primitive latch(q, d, clock, clear); // d-latch 
output q; 
reg q; //q declared as reg to create internal storage input d, clock, clear; 
initial q = 0; //initialize output to value 0 

table //state table 
 

//d clock clear: q : q+ ; 
? ? 1 : ? : 0 ;  //clear condition; 
1 1 0 : ? : 1; //latchq =data=1 

0 1 0 : ? : 0; //latchq =data=0 
? 0 0 : ? : - ; //retain original state if clock = 0 
endtable 

endprimitive 
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Fundamentals of MOSFETs 

In 1958, Jack Kilby built the first integrated circuit flip-flop with two transistors at Texas Instruments. In 2008, 

Intel’s Itanium microprocessor contained more than 2 billion transistors and a 16 Gb Flash memory contained 

more than 4 billion transistors. This corresponds to a compound annual growth rate of 53% over 50 years. No 

other technology in history has sustained such a high growth rate lasting for so long. 

This incredible growth has come from steady miniaturization of transistors and improvements in manufacturing 

processes. Most other fields of engineering involve tradeoffs between performance, power, and price. However, 

as transistors become smaller, they also become faster, dissipate less power, and are cheaper to manufacture. 

This synergy has not only revolutionized electronics, but also society at large. The processing performance once 

dedicated to secret government supercomputers is now available in disposable cellular telephones. The memory 

once needed for an entire company’s accounting system is now carried by a teenager in her iPod. Improvements 

in integrated circuits have enabled space exploration, made automobiles safer and more fuel efficient, 

revolutionized the nature of warfare, brought much of mankind’s knowledge to our Web browsers, and made 

the world a flatter place. Fig. 1.1 shows annual sales in the worldwide semiconductor market. Integrated circuits 

became a $100 billion/year business in 1994. In 2007, the industry manufactured approximately 6 quintillion (6 

× 1018) transistors, or nearly a billion for every human being on the planet. Thousands of engineers have made 

their fortunes in the field. New fortunes lie ahead for those with innovative ideas and the talent to bring those 

ideas to reality. During the first half of the twentieth century, electronic circuits used large, expensive, power- 

hungry, and unreliable vacuum tubes. In 1947, John Bardeen and Walter Brattain built the first functioning 

point contact transistor at Bell Laboratories. It was nearly classified as a military secret, but Bell Labs publicly 

introduced the device the following year. 

 

Fig 1.1 

Ten years later, Jack Kilby at Texas Instruments realized the potential for miniaturization if multiple transistors 

could be built on one piece of silicon. Figure 1.2(b) shows his first prototype of an integrated circuit, 

constructed from a germanium slice and gold wires. The invention of the transistor earned the Nobel Prize in 

Physics in 1956 for Bardeen, Brattain, and their supervisor William Shockley. Kilby received the Nobel Prize in 

Physics in 2000 for the invention of the integrated circuit. Transistors can be viewed as electrically controlled 

switches with a control terminal and two other terminals that are connected or disconnected depending on the 

voltage or current applied to the control. Soon after inventing the point contact transistor, Bell Labs developed 

the bipolar junction transistor. Bipolar transistors were more reliable, less noisy, and more power-efficient. 
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FIGURE 1.2 (a) First transistor (Property of AT&T Archives. Reprinted with permission of AT&T.) and (b) 

first integrated circuit (Courtesy of Texas Instruments.) 

 
Early integrated circuits primarily used bipolar transistors. Bipolar transistors require a small current into the 

control (base) terminal to switch much larger currents between the other two (emitter and collector) terminals. 

The quiescent power dissipated by these base currents, drawn even when the circuit is not switching, limits the 

maximum number of transistors that can be integrated onto a single die. By the 1960s, Metal Oxide 

Semiconductor Field Effect Transistors (MOSFETs) began to enter production. MOSFETs offer the compelling 

advantage that they draw almost zero control current while idle. They come in two flavors: nMOS and pMOS, 

using n-type and p-type silicon, respectively. The original idea of field effect transistors dated back to the 

German scientist Julius Lilienfield in 1925 and a structure closely resembling the MOSFET was proposed in 

1935 by Oskar Heil . but materials problems foiled early attempts to make functioning devices. In 1963, Frank 

Wanlass at Fairchild described the first logic gates using MOSFETs . Fairchild’s gates used both nMOS and 

pMOS transistors, earning the name Complementary Metal Oxide Semiconductor, and CMOS. The circuits 

used discrete transistors but consumed only nanowatts of power, six orders of magnitude less than their bipolar 

counterparts. With the development of the silicon planar process, MOS integrated circuits became attractive for 

their low cost because each transistor occupied less area and the fabrication process was simpler . Early 

commercial processes used only pMOS transistors and suffered from poor performance, yield, and reliability. 

Processes using nMOS transistors became common in the 1970s . Intel pioneered nMOS technology with its 

1101 256-bit static random access memory and 4004 4-bit microprocessor, as shown in Figure 1.1. While the 

nMOS process was less expensive than CMOS, nMOS logic gates still consumed power while idle. Power 

consumption became a major issue in the 1980s as hundreds of thousands of transistors were integrated onto a 

single die. CMOS processes were widely adopted and have essentially replaced nMOS and bipolar processes 

for nearly all digital logic applications. In 1965, Gordon Moore observed that plotting the number of transistors 

that can be most economically manufactured on a chip gives a straight line on a semilogarithmic scale . At the 

time, he found transistor count doubling every 18 months. This observation has been called Moore’s Law and 

has become a self-fulfilling prophecy. Figure 1.1 shows that the number of transistors in Intel microprocessors 

has doubled every 26 months since the invention of the 4004. Moore’s Law is driven primarily by scaling down 

the size of transistors and, to a minor extent, by building larger chips. The level of integration of chips has been 

classified as small-scale, medium-scale, large-scale, and very large scale. Small-scale integration (SSI) circuits, 

such as the 7404 inverter, have fewer than 10 gates, with roughly half a dozen transistors per gate. Medium- 

scale integration (MSI) circuits, such as the 74161 counter, have up to 1000 gates. Large-scale integration 
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(LSI) circuits, such as simple 8-bit microprocessors, have up to 10,000 gates. It soon became apparent that new 

names would have to be created every five years if this naming trend continued and thus the term very large- 

scale integration (VLSI) is used to describe most integrated circuits from the 1980s onward. A corollary of 

Moore’s law is Dennard’s Scaling Law [Dennard74]: as transistors shrink, they become faster, consume less 

power, and are cheaper to manufacture. Intel microprocessor clock frequencies have doubled roughly every 34 

months.This frequency scaling hit the power wall around 2004, and clock frequencies have leveled off around 3 

GHz. Computer performance, measured in time to run an application, has advanced even more than raw clock 

speed. Presently, the performance is driven by the number of cores on a chip rather than by the clock. Even 

though an individual CMOS transistor uses very little energy each time it switches, the enormous number of 

transistors switching at very high rates of speed has made power consumption a major design consideration 

again. Moreover, as transistors have become so small, they cease to turn completely OFF. Small amounts of 

current leaking through each transistor now lead to significant power consumption when multiplied by millions 

or billions of transistors on a chip. The feature size of a CMOS manufacturing process refers to the minimum 

dimension of a transistor that can be reliably built. The 4004 had a feature size of 10 µm in 1971. The Core 2 

Duo had a feature size of 45 nm in 2008. Manufacturers introduce a new process generation (also called a 

technology node) every 2–3 years with a 30% smaller feature size to pack twice as many transistors in the same 

area. Feature sizes down to 0.25 µm are generally specified in microns (10–6 m), while smaller feature sizes are 

expressed in nanometers (10–9 m). Effects that were relatively minor in micron processes, such as transistor 

leakage, variations in characteristics of adjacent transistors, and wire resistance, are of great significance in 

nanometer processes. Moore’s Law has become a self-fulfilling prophecy because each company must keep up 

with its competitors. Obviously, this scaling cannot go on forever because transistors cannot be smaller than 

atoms. Dennard scaling has already begun to slow. By the 45 nm generation, designers are having to make 

trade-offs between improving power and improving delay. Although the cost of printing each transistor goes 

down, the one-time design costs are increasing exponentially, relegating state-of-the-art processes to chips that 

will sell in huge quantities or that have cutting-edge performance requirements. However, many predictions of 

fundamental limits to scaling have already proven wrong. Creative engineers and material scientists have 

billions of dollars to gain by getting ahead of their competitors. In the early 1990s, experts agreed that scaling 

would continue for at least a decade but that beyond that point the future was murky. In 2009, we still believe 

that Moore’s Law will continue for at least another decade. The future is yours to invent. 

Basics of MOSFET: 

A Metal-Oxide-Semiconductor (MOS) structure is created by superimposing several layers of conducting and 

insulating materials to form a sandwich-like structure. These structures are manufactured using a series of 

chemical processing steps involving oxidation of the silicon, selective introduction of dopants, and deposition 

and etching of metal wires and contacts. Transistors are built on nearly flawless single crystals of silicon, which 

are available as thin flat circular wafers of 15–30 cm in diameter. CMOS technology provides two types of 

transistors (also called devices): an n-type transistor (nMOS) and a p-type transistor (pMOS). Transistor 

operation is controlled by electric fields so the devices are also called Metal Oxide Semiconductor Field Effect 

Transistors (MOSFETs) or simply FETs. Cross-sections and symbols of these transistors are shown in Figure 

1.3. The n+ and p+ regions indicate heavily doped n- or p-type silicon. 

Each transistor consists of a stack of the conducting gate, an insulating layer of silicon dioxide (SiO2, better 
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known as glass), and the silicon wafer, also called the substrate, body, or bulk. Gates of early transistors were 

built from metal, so the stack was called metaloxide- semiconductor, or MOS. 

 

 
FIGURE 1.3 nMOS transistor and pMOS transistor 

Since the 1970s, the gate has been formed from polycrystalline silicon (polysilicon), but the name stuck. 

(Interestingly, metal gates reemerged in 2007 to solve materials problems in advanced manufacturing 

processes.) An nMOS transistor is built with a p-type body and has regions of n-type semiconductor adjacent to 

the gate called the source and drain. They are physically equivalent and for now we will regard them as 

interchangeable. The body is typically grounded. A pMOS transistor is just the opposite, consisting of p-type 

source and drain regions with an n-type body. In a CMOS technology with both flavors of transistors, the 

substrate is either n-type or p-type. The other flavor of transistor must be built in a special well in which dopant 

atoms have been added to form the body of the opposite type. The gate is a control input: It affects the flow of 

electrical current between the source and drain. Consider an nMOS transistor. The body is generally grounded 

so the p–n junctions of the source and drain to body are reverse-biased. If the gate is also grounded, no current 

flows through the reverse-biased junctions. Hence, we say the transistor is OFF. If the gate voltage is raised, it  

creates an electric field that starts to attract free electrons to the underside of the Si–SiO2 interface. If the 

voltage is raised enough, the electrons outnumber the holes and a thin region under the gate called the channel 

is inverted to act as an n-type semiconductor. Hence, a conducting path of electron carriers is formed from 

source to drain and current can flow. We say the transistor is ON. For a pMOS transistor, the situation is again 

reversed. The body is held at a positive voltage. When the gate is also at a positive voltage, the source and drain 

junctions are reverse-biased and no current flows, so the transistor is OFF. When the gate voltage is lowered, 

positive charges are attracted to the underside of the Si–SiO2 interface. A sufficiently low gate voltage inverts 

the channel and a conducting path of positive carriers is formed from source to drain, so the transistor is ON. 

Notice that the symbol for the pMOS transistor has a bubble on the gate, indicating that the transistor behavior 

is the opposite of the nMOS. The positive voltage is usually called VDD or POWER and represents a logic 1 

value in digital circuits. In popular logic families of the 1970s and 1980s, VDD was set to 5 volts. Smaller, more 

recent transistors are unable to withstand such high voltages and have used supplies of 3.3 V, 2.5 V, 1.8 V, 1.5 

V, 1.2 V, 1.0 V, and so forth. The low voltage is called GROUND (GND) or VSS and represents a logic 0. It is 

normally 0 volts. In summary, the gate of an MOS transistor controls the flow of current between the source 

and drain. Simplifying this to the extreme allows the MOS transistors to be viewed as simple ON/OFF switches. 

When the gate of an nMOS transistor is 1, the transistor is ON and there is a conducting path from source to 

drain. When the gate is low, the nMOS transistors are OFF and almost zero current flows from source to drain.  

A pMOS transistor is just the opposite, being ON when the gate is low and OFF when the gate is high. This 
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switch model is illustrated in Figure 1.4, where g, s, and d indicate gate, source, and drain. This model will be 

our most common one when discussing circuit behavior. 

 

FIGURE 1.4 Transistor symbols and switch-level models 

Even when transistors are nominally OFF, they leak small amounts of current. Leakage mechanisms include 

subthreshold conduction between source and drain, gate leakage from the gate to body, and junction leakage 

from source to body and drain to body, as illustrated in Figure 2.19 [Roy03, Narendra06]. Subthreshold 

conduction is caused by thermal emission of carriers over the potential barrier set by the threshold. Gate leakage 

is a quantum-mechanical effect caused by tunneling through the extremely thin gate dielectric.Junction leakage 

is caused by current through the p-n junction between the source/drain diffusions and the body. 

In processes with feature sizes above 180 nm, leakage was typically insignificant except in very low power 

applications. In 90 and 65 nm processes, threshold voltage has reduced to the point that subthreshold leakage 

reaches levels of 1s to 10s of nA per transistor,which is significant when multiplied by millions or billions of 

transistors on a chip.In 45 nm processes, oxide thickness reduces to the point that gate leakage becomes 

comparable to subthreshold leakage unless high-k gate dielectrics are employed. Overall, leakage has become 

an important design consideration in nanometer processes. 

Subthreshold Leakage The long-channel transistor I-V model assumes current only flows from source to drain 

when Vgs Vt. In real transistors, current does not abruptly cut off below threshold, but rather drops off 

exponentially, as seen in Figure 2.20. When the gate voltage is high, the transistor is strongly ON. When the 

gate falls below Vt , the exponential decline in current appears as a straight line on the logarithmic scale. This 

regime of Vgs <Vt is called weak inversion. The subthreshold leakage current increases significantly with Vds 

because of drain-induced barrier lowering. There is a lower limit on Ids set by drain junction leakage that is 

exacerbated by the negative gate voltage. 

MOSFETs in the Sub-threshold Region (i.e. a bit below VT) 

In the depletion approximation for n-channel MOS structures we have neglected the electrons beneath the gate 

electrode when the gate voltage is less than the threshold voltage, VT. We said that it is only when the gate 

voltage is above threshold that they are significant, and that they are then the dominant negative charge under 

the gate. Furthermore, we say that above threshold all of the gate voltage in excess of VT induces electrons in 

the channel. 

As MOS integrated circuit technology has evolved to exploit smaller and smaller device structures, it has 

become increasingly important in recent years to look more closely at the minority carriers present under the 

gate when the gate voltage is less than threshold, i.e. in what is called the “sub-threshold” region. These carriers 

cannot be totally neglected, and play an important role in device and circuit performance. At first they were 

viewed primarily as a problem, causing undesirable “leakage” currents and limiting circuit performance. Now it 
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is recognized that they also enable a very useful mode of MOSFET operation, and that the sub- threshold region 

of operation is as important as the traditional cut-off, linear, and saturations regions of operation. To begin our 

study of the sub-threshold region, we will first quickly review the electrostatics of the MOS capacitor, and the 

electrostatic potential profile predicted by the depletion approximation model. 

 

 
 

Fig 1.5 

Then we will use this result to derive a more accurate expression than that in Equation 1 for qN* below 

threshold, and use the resulting expression to, among other things, assess the assumption that the contribution of 

the mobile electrons underneath the gate to the net charge density in the depletion region is negligible compared 

to the contribution from the ionized acceptors. Finally we will look at the current-voltage characteristic of a 

MOSFET operating in the sub-threshold region, and merge it with our earlier model so that we then have a 

model in which the mobile electron charge is taken into account and the drain current is no longer identically 

zero when vGS is less than VT. 
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FIGURE 1.6 

The electron sheet charge density under the gate with a gate voltage in the vicinity of threshold. The blue curve 

corresponds to the sub-threshold weak-inversion charge [Eq. 12], and the red curve is the strong inversion 

charge from traditional depletion approximation modeling. The sum is plotted in the yellow curve. 

 
The MOSFET Drain Current in the Sub-threshold Region: 

 

 
 

 

FIGURE 1.7 

The drain current, iD, for gate biases from just below to just above threshold illustrating the relative sizes of the 

diffusion (sub-threshold) and drift (strong inversion) components of iD. Figure 1.7 a shows the situation with a 

course voltage scale, while Figure 1.7 b has smaller increments and thus focuses in more on the curves near VT. 
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FIGURE 1.8 

The drain current, iD, for gate biases from just below to just above threshold as in Figure 1.7b, but now plotted 

on a log-linear graph so the nature of the small, sub-threshold current and its variation with input voltage, VGS, 

is more clear. The simple depletion approximation model we are using, our neglect of drift currents below 

threshold, and our use of a saturated diffusion current above threshold, are all reasonable approximations, and 

are better the further we are above or below threshold. We should expect them to have limitations very near 

threshold, however, and in particular we should not demand too much from them as we pass from vGS < VT to 

vGS > VT. The curves look rather smooth in Figure 1.7 b, but we see a slight kink on the log scale of Figure 1.8. 

Interestingly, this kink can be smoothed nicely by using the adjusted threshold in the saturation current 

expression, as shown in Fig. 1.8, but is largely coincidence as the 6 mV shift came from looking at the total gate 

charge in the sub-threshold region, not the inversion layer in strong inversion. Just the same, our simple models 

accurately reflect the physics, and do an outstanding job no matter how one looks at it. 

ENHANCEMENT AND DEPLETION MODE MOS TRANSISTORS 

MOS Transistors are built on a silicon substrate. Silicon which is a group IV material is the eighth most 

common element in the universe by mass, but very rarely occurs as the pure free element in nature. Pure silicon 

has no free carriers and conducts poorly. But adding dopants to silicon increases its conductivity. If a group V 

material i.e. an extra electron is added, it forms an n-type semiconductor. If a group III material i.e. missing 

electron pattern is formed (hole), the resulting semiconductor is called a p-type semiconductor. 

A junction between p-type and n-type semiconductor forms a conduction path. Source and Drain of the Metal 

Oxide Semiconductor (MOS) Transistor is formed by the “doped” regions on the surface of chip. Oxide layer is 

formed by means of deposition of the silicon dioxide (SiO2) layer which forms as an insulator and is a very thin 

pattern. 

Gate of the MOS transistor is the thin layer of “polysilicon (poly)”; used to apply electric field to the surface of 

silicon between Drain and Source, to form a “channel” of electrons or holes. Control by the Gate voltage is 

achieved by modulating the conductivity of the semiconductor region just below the gate. This region is known 

as the channel. The Metal–Oxide–Semiconductor Field Effect Transistor (MOSFET) is a transistor which is a 

voltage-controlled current device, in which current at two electrodes, drain and source is controlled by the 

action of an electric field at another electrode gate having in-between semiconductor and a very thin metal 

oxide layer. It is used for amplifying or switching electronic signals. The Enhancement and Depletion mode 

MOS transistors are further classified as N-type named NMOS (or N-channel MOS) and P-type named PMOS 

(or P-channel MOS) devices. Figure 1.9 shows the MOSFETs along with their enhancement and depletion 
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modes. 
 

 

 

Figure 1.9: (c) Enhancement P-type MOSFET (d) Depletion P-type MOSFET 

 
 

The depletion mode devices are doped so that a channel exists even with zero voltage from gate to source 

during manufacturing of the device. Hence the channel always appears in the device. To control the channel, a 

negative voltage is applied to the gate (for an N-channel device), depleting the channel, which reduces the 

current flow through the device. In essence, the depletion-mode device is equivalent to a closed (ON) switch, 

while the enhancement-mode device does not have the built in channel and is equivalent to an open (OFF) 

switch. Due to the difficulty of turning off the depletion mode devices, they are rarely used 

Working of Enhancement Mode Transistor The enhancement mode devices do not have the in-built channel. 

By applying the required potentials, the channel can be formed. Also for the MOS devices, there is a threshold 

voltage (Vt), below which not enough charges will be attracted for the channel to be formed. This threshold 

voltage for a MOS transistor is a function of doping levels and thickness of the oxide layer. 

Case 1: Vgs = 0V and Vgs < Vt The device is non-conducting, when no gate voltage is applied (Vgs = 0V) or 

(Vgs < Vt) and also drain to source potential Vds = 0. With an insufficient voltage on the gate to establish the 

channel region as N-type, there will be no conduction between the source and drain. Since there is no 

conducting channel, there is no current drawn, i.e. Ids = 0, and the device is said to be in the cut-off region. 

This is shown in the Figure 1.7 (a). 
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Figure 2.0 (a) 

Case 2: Vgs > Vt When a minixmum voltage greater than the threshold voltage Vt (i.e. Vgs > Vt) is applied, a 

high concentration of negative charge carriers forms an inversion layer located by a thin layer next to the 

interface between the semiconductor and the oxide insulator. This forms a channel between the source and drain 

of the transistor. This is shown in the Figure 2.0 (b). 

 

Figure 2.0: (b) Formation of a Channel 

A positive Vds reverse biases the drain substrate junction, hence the depletion region around the drain 

widens, and since the drain is adjacent to the gate edge, the depletion region widens in the channel. This is 

shown in Figure 2.0(c). This results in flow of electron from source to drain resulting in current Ids.. The device 

is said to operate in linear region during this phase. Further increase in Vds, increases the reverse bias on the 

drain substrate junction in contact with the inversion layer which causes inversion layer density to decrease. 

This is shown in Figure 2.0 (d). The point at which the inversion layer density becomes very small (nearly zero) 

at the drain end is termed pinch-off. The value of Vds at pinch-off is denoted as Vds,sat. This is termed as 

saturation region for the MOS device. Diffusion current completes the path from source to drain in this case, 

causing the channel to exhibit a high resistance and behaves as a constant current source. 

The MOSFET ID versus VDS characteristics (V-I Characteristics) is shown in the Figure 2.0. 

For VGS < Vt, ID = 0 and device is in cut-off region. As VDS increases at a fixed VGS, ID increases in the 

linear region due to the increased lateral field, but at a decreasing rate since the inversion layer density is 

decreasing. Once pinch-off is reached, further increase in VDS results in increase in ID; due to the formation of 

the high field region which is very small. The device starts in linear region, and moves into saturation region at 

higher VDS. 
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The MOSFET transistor has become one of the most important devices used in the design and construction 

of integrated   circuits.   Its   thermal   stability   and   other   general characteristics make it extremely popular 

in computer circuit design.The basic principle of the MOSFET is that the source-to-drain current(SD 

current) is controlled by the gate voltage, or better, by the gate electric field. The electric field indices 

charge (field effect) in tahe semiconductor at the semiconductor –oxide interface.Thus the MOSFET is a 

voltage-controlled current source. 

Basic MOS transistors with the doping concentration of transistor two types of MOS transistors are 

available as NMOS transistor and PMOS transistor. With their mode of operation further they are classified 

as depletion mode transistor and enhancement mode transistor. 

NMOSenhancement mode transistor 

nMOS devices are formed in a p-type substrate of moderate doping level. The source and drain regions are 

formed by diffusing n-type impurities through suitable masks into these areas. Thus source and drain are 

isolated from one another by two diodes and their Connections      are made by a   deposited metal layer. 

The basic block diagrams of nMOS enhancement mode transistor is shown in figure. 

 

Fig 2.1 

If the gate terminal is connected to a positive voltage(a minimum voltage level of  threshold 

voltage) with respect to the source, then the electric field established between the gate and the substrate which 

gives a charge inversion region in the substrate under the gate insulation and a conduction path or channel is 

formed between source and drain, but no current flows between source and drain(Vds=0) .When current flows 

in the channel by applying a voltage Vds between source and drain there must bea voltage(IR) drop = Vds 

along the channel. 

This results that the voltage between gate and channel varying with distance along the channel with the voltage 

being a maximum of Vgs at the source end. The effective gate voltage is Vg = Vgs - Vt   .To invert the 

channel at the drain end there will be voltage is available upto when Vgs-Vt > Vds.• For all voltages Vds < 

Vgs - Vt the device is in the non-satrurated region. 
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Fig 2.2 

When Vds   is increased to a level greater than Vgs - Vt,, if the voltage drop = Vgs - Vt    takes place over 

less than the whole length of the channel near the drain, there is insufficient electric field available to give 

rise to an inversion layer to create the channel. Then the voltage is called ‘pinch-off’ voltage. At this stage 

the diffusion current completes the path from source to drain and the channel exhibits a high resistance and 

behave as constant current source, This region is known as ‘saturation’ region. 

 
nMOSdepletion mode transistor 

The basic block diagram of nMOS depletion mode transistor is shown in figure. In depletion mode 

transistor the channel is established even the voltage Vgs = 0 by implanting suitable   impurities   in the 

region between source and drain during manufacture and prior to depositing the insulation and the gate. 

 
 

Fig 2.3 

At this stage the source and drain are connected by a conducting channel, but the channel may now be closed 

by applying a suitable negative voltage to the gate. In both enhancement and depletion mode cases, 

variations of the gate voltage allow control of any current flow between source and drain. 

DRAIN-TO-SOURCE CURRENT Ids versus VOLTAGE Vds RELATIONSHIPS) 

The whole concept of the MOS transistor evolves from the use of a voltage on the gate to induce a charge in the 

channel between source and drain, which may then be caused to move from source to drain under the influence of 

an electric field created by voltage V ds applied between drain and source. Since the charge induced is dependent 

on the gate to source voltage Vgs• then Ids is dependent on both Vgs and Vds· Consider a structure, as in Figure 

2.1, in which" electrons will flow source to drain: 
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MOSFET parasitic capacitances : 

These are subdivided into two general categories: 

1. extrinsic capacitances 

2. intrinsic capacitances. 

Extrinsic capacitances are associated with regions of the transistor outside the dashed line. 

Intrinsic capacitances are all those capacitances located within the boxed region. 



 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

EXTRINSIC CAPACITANCES 

Extrinsic capacitances are modeled by using lumped capacitances, each of which is associated with a region 

of the transistor’s geometry.One capacitor is used between each pair of transistor terminals, plus an 

additional capacitor between the well and the bulk if the transistor is fabricated in a well. 

 

 

 

 

 

 

 

 

 

 

 
 

Extrinsic Capacitance Types 

 Overlap capacitances that are mostly dependent on geometry.

 Junction capacitances that are dependent on geometry and on bias.
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Diode Capacitance 

When a reverse voltage is applied to a PN junction , the holes in the p-region are attracted to the anode 

terminal and electrons in the n-region are attracted to the cathode terminal. The resulting region contains 

almost no carriers, and is called the depletion region. The depletion region acts similarly to the dielectric of a 

capacitor.The depletion region increases in width as the reverse voltage across it increases. If we imagine 

that the diode capacitance can be likened to a parallel plate capacitor, then as the plate spacing (i.e. the 

depletion region width) increases, the capacitance should decrease. Increasing the reverse bias voltage across 

the PN junction therefore decreases the diode capacitance. Source/Drain-Bulk Junction Capacitances At the 

source region there is a source-to bulk junction capacitance, CjBS,e, and at the drain region there is a drain- 

to-bulk junction capacitance, CjBD,e. Source/Drain-Bulk Junction Capacitances The junction capacitances 

can be calculated by splitting the drain and source regions into a “side-wall” portion and a “bottom-wall” 

portion. n The capacitance associated with the side wall portion is found by multiplying the length of the 

side-wall perimeter (excluding the side contacting the channel) by the effective sidewall capacitance per unit 

length. The capacitance for the bottom-wall portion is found by multiplying the area of the bottomwall by the 

bottom-wall capacitance per unit area. Well-Bulk Junction Capacitance If the MOSFET is in a well, a well- 

to-bulk junction capacitance, CjBW,e, must be added. The well-bulk junction capacitance is calculated 

similarly to the source and drain junction capacitances, by dividing the total well-bulk junction capacitance 

into side-wall and bottom-wall components. If more than one transistor is placed in a well, the well-bulk 

junction capacitance should only be included once in the total model. 
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UNIT-II 

VLSI Design styles 
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nMOS FABRICATION 

Fabrication is the process to create the devices and wires on a single silicon chip. 

• The process starts with a silicon substrate of high purity into which the required p-impurities are 

introduced. 

• A layer of silicon dioxide(sio2) is grown all over the surface of the wafer to protect the 

surface and acts as a barrier to dopants during processing and provide a generally insulating 

substrate onto which other layers may be deposited and patterned. 

 

 The surface is now covered with a photoresist which is deposited onto 

the wafer and spun to achieve an even distribution of the required thickness.

 

• The photoresist layer is then exposed to ultraviolet light through a mask which efines those 

regions into which diffusion is to take place together with transistor channels. 



 
 
 

• These areas are subsequently readily etched away together with the underlying silicon dioxide so 

that the wafer surface is exposed in the window defined by the mask. 

 

• The remaining photoresist is removed and a thin layer of sio2 is grown over the entire chip surface 

and then polysilicon is deposited on top of this to form the gate structure. 

 

 

• The polysilicon layer consists of heavily doped polysilicon deposited by chemical vapour 

de
2
p
6
osition(CVD), 



 
 

 

 

 

 

 

 

 

 

 

 

• Further photoresist coating and masking allows the polysilicon to be patterned and then the thin 

oxide is removed to exposed areas into which n-type impurities are to be diffused to form the source 

and drain. 

 

 

 

 

 

 

 

 

• Diffusion is achieved by heating the wafer to a high temperature and passing a gas containing the 

desired n-type impurity over the surface. 

 

 

 

 

 

 

 

 

 

 

 
• Thick oxide (sio2) is grown over all again and is then masked with photoresist and etched to 

expose selected aareas of the polysilicon gate and the drain and source areas where connections area 

to be made. 
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• The whole chip then has metal deposited over the surface to a thickness typically of 1µm. This 

metal layer is then masked and etched to form the required interconnection pattern. 

 
cMOS fabrication 

 

 CMOS Technology depends on using both N-Type and P-Type devices on the same chip. 

The two main technologies to do this task are:

• P-Well (Will discuss the process steps involved with this technology) 

•The substrate is N-Type. The N-Channel device is built into a P-Type well within the parent N- 

Type substrate. The P-channel device is built directly on the substrate. 

• N-Well 

•The substrate is P-Type. The N-channel device is built directly on the substrate, while the P- 

channel device is built 

•Two more advanced technologies to do this task are:Becoming more popular for sub-micron 

geometries where device performance and density must be pushed beyond the limits of the 

conventional p & n-well CMOS processes. 

•Twin Tub 

•Both an N-Well and a P-Well are manufactured on a lightly doped N-type substrate. 

•Silicon-on-Insulator (SOI) CMOS Process 

•SOI allows the creation of independent, completely isolated nMOS and pMOS transistors 

virtually side-by-side on an insulating substrate. 

The simplified process sequence for the fabrication of CMOS integrated circuits on a p- type 

silicon substrate is shown. 

•The process starts with the creation of the n-well regions for pMOS transistors, by impurity 

implantation into the substrate. 

 Then, a thick oxide is grown in the regions surrounding the nMOS and pMOS 

active regions.

•The thin gate oxide is subsequently grown on the surface through thermal oxidation. 

•These steps are followed by the creation of n+ and p+ regions (source, drain and channel-stop 

implants). 

•Finally the metallization is created (creation of metal interconnects). 
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n-well process 

• The n-well CMOS process starts with a moderately doped (impurity concentration 

~1016/cm3) p-type silicon substrate. Then, an initial thick “field” oxide layer (5000A) is grown on 

the entire surface. 

•The first lithographic mask defines the n-well region. Donor atoms, usually phosphorus, are 

implanted through this window in the oxide. Once the n-well is created, the active areas of the 

nMOS and pMOS transistors can be defined. 

•Following the creation of the n-well region, a thick field oxide is grown around the transistor 

active regions, and a thin gate oxide (25A) is grown on top of the active regions 

•The polysilicon layer (3000A) is deposited using chemical vapor deposition (CVD) and 

patterned by dry plasma etching. The created polysilicon lines will function as the gate 

electrodes of the nMOS and the pMOS transistors and their interconnects 

•Using a set of two masks, the n+ and p+ Source   and Drain regions are implanted into the 

substrate and into the n- well, respectively. 

•The ohmic contacts to the substrate and to the n-well are implanted in this process step 

•An insulating silicon dioxide layer is deposited over the entire wafer using CVD 

(5000A).   This   is   for   passivation,   the   protection   of   all   the   active   components   from 
29 

contamination. 

•The contacts are defined and etched away to expose the silicon or polysilicon contact windows. 



These contact windows are necessary to complete the circuit interconnections using the metal 

layer, which is patterned in the next step. 

•Metal (aluminum, >5000A) is deposited over the entire chip surface using metal 

evaporation, and the metal lines are patterned through etching. 

•Since the wafer surface is non-planar, the quality and the integrity of the metal lines created in 

this step are very critical and are ultimately essential for circuit reliability. 

•The composite layout and the resulting cross-sectional view of the chip, showing one nMOS 

and   one   pMOS   transistor   (built-in   n-well),   the   polysilicon   and metal interconnections. 

•The final step is to deposit a full SiO2 passivation layer (5000A), for protection, over the chip, 

except for wire-bonding pad areas. 

 

 

 

 
 

 

 

 

 

 

 
 

 

•  

p-well process 

• P3-0well on N-substrate 

• N-type substrate 

• Oxidation, and mask (MASK 1) to create P-well (4-5µm deep) 
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• P-well doping 

• P-well acts as substrate for nMOS devices. 

• The two areas are electrically isolated using thick field oxide (and often 

• isolation implants [not shown here]) 
 

 
 

 

 
Polysilicon Gate Formation 

• Remove p-well definition oxide 

• Grow thick field oxide 

• Pattern (MASK 2) to expose nMOS and pMOS active regions 

• Grow thin layer of SiO2 (~0.1µm) gate oxide, over the entire chip surface 

• Deposit polysilicon on top of gate oxide to form gate structure 

• Pattern poly on gate oxide (MASK 3) 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

• nMOS P+ Source/Drain difusion – self-aligned to Poly gate 

• Implant P+ nMOS S/D regions (MASK 4) 
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• pMOS N+ Source/Drain difusion – self-aligned to Poly gate 

 

• Implant N+ pMOS S/D regions (MASK 5 – often the inverse of MASK 4) 
 

 

 

• pMOS N+ Source/Drain difusion, contact holes & metallisation 

• Oxide and pattern for contact holes (MASK 6) 

• Deposit metal and pattern (MASK 7) 

• Passivation oxide and pattern bonding pads (MASK 8) 

• P-well acts as substrate for nMOS devices. 

• Two separate substrates : requires two separate substrate connections 

• Definition of substrate connection areas can be included in MASK 4/MASK5 
 

 
 



Twin-Tub (Twin-Well) CMOS Process 

This technology provides the basis for separate optimization of the nMOS and pMOS transistors, 

thus making it possible for threshold voltage, body effect and the channel transconductance of 

both types of transistors to be tuned independently. Generally, the starting material is a n+ or p+ 

substrate, with a lightly doped epitaxial layer on top. This epitaxial layer provides the actual 

substrate on which the n-well and the p-well are formed. Since two independent doping steps are 

performed for the creation of the well regions, the dopant concentrations can be carefully 

optimized to produce the desired device characteristics. The Twin-Tub process is shown below. 

 

In the conventional p & n‐well CMOS process, the doping density of the well region is typically about 

one order of magnitude higher than the substrate, which, among other effects, results in unbalanced drain 

parasitics. The twin‐tub process avoids this problem. 

Noise Margin 

Noise margin is closely related to the DC voltage characteristics [Wakerly00]. This parameter allows you to 

determine the allowable noise voltage on the input of a gate so that the output will not be corrupted. The 

specification most commonly used to describe noise margin (or noise immunity) uses two parameters: the 

LOW noise margin, NML, and the HIGH noise margin, NMH., NML is defined as the difference in maximum 

LOW input voltage recognized by the receiving gate and the maximum LOW output voltage produced by the 

driving gate. 

 

Th
3

e
3

value of NMH is the difference between the minimum HIGH output voltage of the driving gate and the 

minimum HIGH input voltage recognized by the receiving gate. 

Thus, 



 

 
 

where 

VIH = minimum HIGH input voltage 

VIL = maximum LOW input voltage 

VOH= minimum HIGH output voltage 

VOL = maximum LOW output voltage 

 
 

Inputs between VIL and VIH are said to be in the indeterminate region or forbidden zone and do not 

represent legal digital logic levels. Therefore, it is generally desirable to have VIH as close as possible to VIL 

and for this value to be midway in the “logic swing,” VOL to VOH. This implies that the transfer 

characteristic should switch abruptly; that is, there should be high gain in the transition region. For the 

purpose of calculating noise margins, the transfer characteristic of the inverter and the definition of voltage 

levels VIL, VOL, VIH, and VOH are shown in Figure above. Logic levels are defined at the unity gain point 

where the slope is –1. This gives a conservative bound on the worst case static noise margin . 

THE nMOS INVERTER 

A basic requirement for producing a complete range of logic circuits is the inverter. This is needed for 

restoring logic levels, for Nand and Nor gates, and for sequential and memory circuits of various forms . The 

basic inverter circuit requires a transistor with source connected to ground and a load resistor of some sort 

connected from the drain to the positive supply rail Vvv· The output is taken from the drain and the input 

applied between gate and ground. Resistors are not conveniently produced on the silicon substrate; even 

modest values occupy excessively large areas so that some other form of load resistance is required. A 

convenient way to solve this problem is to use a depletion mode transistor as the load, as 

sh3ow4 n in Figure 2.5. 



 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

• With no current drawn from the output, the currents Ids for both transistors must be equal. 

• For the depletion mode transistor, the gate is connected to the source so it is always on and only the 

characteristic curve Vgs = 0 is relevant. 

• In this configuration the depletion mode device is called the pull-up (p.u.) and the enhancement mode 

device the pull-down (p.d.) transistor. 

• To obtain the inverter transfer characteristic we superimpose the Vgs = 0 depletion mode characteristic 

curve on the family of curves for the enhancement mode device,noting that maximum voltage across the 

enhancement mode device corresponds to minimum voltage across the depletion mode transistor. 

• The points of intersection of the curves as in Figure f-6 give points on the transfer characteristic, which is 

of the form shown in Figure 2.7. 

• Note that as Vin(=Vgs p.d. transistor) exceeds the p.d. threshold voltage current begins to flow. The output 

voltage Vout thus decreases and the subsequent increases in Vin will cause the p.d. transistor to come out of 

saturation and become resistive. Note that the p.u. transistor is initially resistive as the p.d. turns on. 
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during transition, the slope of the transfer characteristic determines the gain:(.fl 

 
 
 
 
 
 
 
 
 
 

THE CMOS INVERTER 

(a) No current flow either for logical 0 or for logical 1 inputs. 

(b) Full logical 1 and 0 levels are presented at the output. 

(c) For devices of similar dimensions the p-channel is slower than the n-channel device. 
 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

36 



 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

The general arrangement and characteristics are illustrated in Figure 2.14. We have seen (equations 2.4 and 

2.5) that the current/voltage relationships for the MOS transistor may be written 
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Considering the static conditions first, it may be Seen that in region 1 for which Vin =logic 0, we have the p- 

lransistor fully turned on while the n-transistor is fully turned off.Thus no current flows through the _inverter 

and the output is directly connected to V DDthrough the p-transistor. A good logic 1 output voltage is thus 

present at the output. 

In region 5 V;,. = logic 1, the n-transistor is fully on while the p-transistor is fully off.Again, no current flows 

and a good logic 0 appears at the output. 

In region 2 the input voltage has increased to a level which just exceeds the threshold voltage of the n- 

transistor. The n-transistor conducts and has a large voltage between source and drain; so it is in saturation. 

The p-transistor is also conducting but with only a small voltage across it, it operates in the unsaturated 

resistive region. A small current now flows through the inverter from V00 to V55. If we wish to analyze the 

behavior in this region, we equate the p-device resistive region current with the n-device saturation current 

and thus obtain the voltage and current relationships. 

Region 4 is similar to region 2 but with the roles of the p- and n-transistors reversed. However, the current 

magnitudes in regions 2 and 4 are small and most of the energy 

consumed in switching from one state to the other is due to the larger current which flows 

in region 3. 

Region 3 is the region in which the inverter exhibits gain and in which both transistors 

are in saturation. 

The currents (with regard to Figure 2.14(c)) in each device must be the same: since the transistors are in 

series, so we may write 

 

Since both transistors are in saturation, they act as current sources so that the equivalent circuit in this region 

is two current sources in series between V00 and Vss with the output voltage coming from their common 

point. The region is inherently unstable in consequence and the changeover from one logic level to the other 

is 3ra8pid. 



 

This implies that the changeover between logic levels is symmetrically disposed about 

the point at which 

 
 

 

Pa3s9s Transistors and Transmission Gates 
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Switches and switch logic may be formed from simple n- or p-pass transistors or from transmission gates 

(complementary switches) comprising an n-pass and a p-pass transistor in parallel as shown in Figure 6.2. 

The reason for adopting the apparent complexity of the transmission gate, rather than using a simple n- 

switch or p-switch in most CMOS applications, is to eliminate the undesirable threshold voltage effects 

which give rise to the loss of logic levels in pass transistors as indicated in Figure 6.2. No such degradation 

occurs with the transmission gate, but more area is occupied and complementary signals are needed to drive it. 

'On' resistance, however, is lower than that of the simple pass transistor switches. 

When using nMOS switch logic, there is one restriction which must always be observed: no pass transistor 

gate input may be driven through one or more pass transistors (see Figure 6.2).As shown, logic levels 

propagated through pass transistors are degraded by threshold voltage effects. Since the sign~l out of pass 

transistor T1 does not reach a full logic 1, but rather a voltage one transistor threshold below a true logic 1, 

this degraded voltage would not permit the output of T2 to reach an acceptable logic 1 level. 

 
 

 
ALTERMTIVE FORMS OF PULL-UP 

Up to now we have assumed that the inverter circuit has a depletion mode pull-up transistor as its load. There 

are, however; at least four possible arrangements: 

1. Load resistance RL (Figure 2.11 ). This arrangement is not often used because of the large space 

requirements of resistors produced in a silicon substrate. 
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2. nMOS depletion mode transistor pull-up (Figure 2.12). 

(a) Dissipation is high ,since rail to rail current flows when V;n = logical 1. 

(b) Switchlng of output from 1 to 0 begins when V;n exceeds V, of p.d. device. 

(c) When switching the output from 1 to 0, the p.u. device is non-saturated initially 

and this presents lower resistance through which to charge capacitive loads . 

 
 

3. nMOS enhancement mode pull-up · (Figure 2.13). 

(a) Dissipation is high since current flows when V;n =logical 1 (VaG is returned to V00) . 

(b) Vout can never reach V DD (logical I) if V GG = V 00 as is normally the case. 



 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

(c) VGG may be derived from a switching source, for example, one phase of a clock, 

so that dissipation can be greatly reduced. 

(d) If VGG is higher than VDD then an extra supply rail is required. 

4. Complementary transistor pull-up (CMOS) (Figure 2.14). 

(a) No current flow either for logical 0 or for logical 1 inputs. 

(b) Full logical 1 and 0 levels are presented at the output. 

(c) For devices of similar dimensions the p-channel is slower than the n-channel device. 
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BICMOS Inverters 

 

As in nMOS and CMOS logic circuitry, the basic logic element is the .inverter circuit.When designing with 

BiCMOS in mind, the logical approach is to use MOS switches to perform the logic function and bipolar 

transistors to drive the output loads. The simplest logic function is that of inversion, and a simple BiCMOS 

inverter circuit is readily set out as shown in Figure 2.17. 

It consists of two bipolar transistors T1 and T2 with one nMOS transistor T3, and one pMOS transistor T4, 

both being enhancement mode devices. The actiori of the circuit is straight forward and may be described as 

follows: 

• With Vin ·= 0 volts (GND) T3 is off so that T1 will be non-conducting. But T4 is on and supplies current to 

the base of T2 which will conduct and act as a current source to charge the load Cr toward +5 volts(Vnn). 

The output of the inverter will rise to +5 volts less the · base to emitter voltage VBE of T2. 

• With Vin = +5 volts· CVnn) T4 is off so that T2 will be non-conducting. But T3 will now be on and will 

supply current to the base of T1 which will conduct and act as a current sink to the' load Cr discharging it 

toward 0 volts (GND). The output of the inverter will fall to 0 volts plus the saturation voltage VCEsat from 

the collector to the emitter of T1• 

• T1 and T2 will present low impedances when turned on into saturation and the load Cr will be charged or 

discharged rapidly. 
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• The output logic levels will be good and will be close to the rail voltages since V CEsat is quite small and 

V8E is approximately + 0.7 volts. 

• The inverter has a high input impedance. 

• The inverter has a low output impedance. 

• The inverter has a high current drive capability but occupies a relatively small area. 

• The inverter has high noise margins. 

However, owing to the presence of a DC path from VDD to GND through T3 and T1 this is not a good 

arrangement to implement since there will be a significant static current flow whenever Vin = logic I. There 

is also a problem in that there is no discharge path for current from the base of either bipolar transistor when 

it is being turned off. This will slow down the action of this circuit. An improved version of this circuit is 

given in Figure 2.18, in which the DC path through T3 and T1 is eliminated, but the output voltage swing is 

now reduced, since the output cannot fall below the base to emitter voltage VBE of T1. 

An improved inverter arrangement, using resistors, is shown in Figure 2.19. In this circuit resistors provide 

the improved swing of output voltage when each bipolar transistor is off, and also provide discharge paths 

for base current during turn-off. The provision of on chip resistors of suitable value is not always convenient 

and may be space-consuming, so that other arrangements-such as in Figure 2.20-are used. In this circuit, the 

transistors T5 and T6 are arranged to turn on when T2 and T1 respectively are being turned off. 

 
 



 

 
 

In general, BiCMOS inverters offer many advantages where high load current sinking and sourcing is 

required. 

 

 

MOS LAYERS : 

MOS design is aimed at turning a specification into masks for processing silicon to meet the specification. 

We have seen that MOS circuits are formed on four basic layers-n-diffusion- diffusion, polysilicon, and 

metal, which are isolated from one another by thick or thin(thinox) silicon dioxide insulating layers. The thin 

oxide (thinox) mask region includes n-diffusion, p- diffusion, and transistor channels. Polysilicon and thinox 

regions interact so that a transistor is formed where they cross one another. In some processes, there may be 

a second metal layer and also, in some processes, a second polysilicon layer. Layers may deliberately joined 

together where contacts are formed. It is also clear that the basic MOS transistor properties can be modified 

by the use of an implant within the thinox region and this is used in nMOS circuits to produce depletion 

mode transistors. The BiCMOS technology is developed by including the bipolar transistors in this design 

process by the addition of extra layers to a CMOS process. 

STICK DIAGRAMS : 

A stick diagram is a diagrammatic representation of a chip layout that helps to abstract a model for design of 

full layout from traditional transistor schematic. Stick diagrams are used to convey the layer information 

with the help of a color code .For example, in the case of nMOS design, green color is used for n-diffusion, 

red for polysilicon, blue for metal, yellow for implant, and black for contact areas. Monochrome encoding is 

also used in stick diagrams to represent the layer information. The monochrome encoding chosen is shown in 



 

figure(a). 

 



The layout of stick diagrams faithfully reflects the topology of the actual layout in silicon. The color 

encoding is compatible with color terminals, printers, and plotters having quite simple color palettes. Using 

color workstations, the mask areas are usually color filled while pen plotters produce color outlines only. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. Encodings for a simple metal nMOS process(color). 
 

 

 

 

 

 

 

 

 
 

 
 

 

Stick diagram for n-MOS transistor is Shown above. The two parallel rails indicate VDD and GND 
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nMOS Design Style : 

To understand the design rules for nMOS design style , let us consider a single metal, single polysilicon 

nMOS technology. 

The layout of nMOS is based on the following important features. 

• n-diffusion [n-diff.] and other thin oxide regions [thinox] (green) ; 

• polysilicon 1 [poly.]-since there is only one polysilicon layer here (red); 

• metal 1 [metal]-since we use only one metal layer here (blue); 

• implant (yellow); 

• contacts (black or brown [buried]). 

A transistor is formed wherever poly. crosses n-diff. (red over green) and all diffusion wires 

(interconnections) are n-type (green). 

When starting a layout, the first step normally taken is to draw the metal (blue) VDD and GND rails in 

parallel allowing enough space between them for the other circuit elements which will be required. Next, 

thinox (green) paths may be drawn between the rails for inverters and inverter- based logic as shown in Fig. 

below. Inverters and inverter-based logic comprise a pull-up structure, usually a depletion mode transistor, 

connected from the output point to VDD and a pull- down structure of enhancement mode transistors 

suitably interconnected between the output point and GND.This is illustrated in the Fig.(b). remembering 

that poly. (red) crosses thinox (green) wherever transistors are required. One should consider the implants 

(yellow) for depletion mode transistors and also consider the length to width (L : W) ratio for each transistor. 

These ratios are important particularly in nMOS and nMOS- like circuits. 
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Figure 7 shows the stick diagram nMOS implementation of the function f=[(xy)+z]’ 
 

 



 
 

 

 
 
 

 

Fig . nMOS stick layout design style 

CMOS Design Style : 

The CMOS design rules are almost similar and extensions of n-MOS design rules except the implant 

(yellow) and the buried contact (brown). In CMOS design Yellow is used to identify p- transistors and wires, 

as depletion mode devices are not utilized. The two types of transistors 'n' and 'p', are separated by the 

demarcation line (representing the p-well boundary) above which all p-type devices are placed (transistors 

and wires (yellow). The n-devices (green) are consequently placed below the demarcation line and are thus 

located in the p-well as shown in the diagram below. 

Diffusion paths must not cross the demarcation line and n-diffusion and p-diffusion wires must not join. The 

'n' and 'p' features are normally joined by metal where a connection is needed. Their geometry will appear 

wh5e2n the stick diagram is translated to a mask layout. However, one must not forget to place crosses on 

VDD and Vss rails to represent the substrate and p-well connection respectively. 
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The design style is explained by taking the example the design of a single bit shift register. The design 

begins with the drawing of the VDD and Vss rails in parallel and in metal and the creation of an (imaginary) 

demarcation line in-between, as shown in Fig.below. The n-transistors are then placed below this line and 

thus close to Vss, while p-transistors are placed above the line and below VDD In both cases, the transistors 

are conveniently placed with their diffusion paths parallel to the rails (horizontal in the diagram) as shown in 

Fig.(b). A similar approach can be taken with transistors in symbolic form. 

 
 

 

 
Fig. CMOS stick layout design style (a,b,c,d) 
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The n- along with the p-transistors are interconnected to the rails using the metal and connect as shown in 

Fig.(d). It must be remembered that only metal and poly-silicon can cross the demarcation line but with that 

restriction, wires can run-in diffusion also. Finally, the remaining interconnections are made as appropriate 

and the control signals and data inputs are added as shown in the Fig.(d). 

 
Design Rules and Layout : 

The design rules are formed to translate the circuit design concepts , (usually in stick diagram or symbolic 

form) into actual geometry in silicon. The design rules are the effective interface between the circuit/system 

designer and the fabrication engineer. The design rules also help to provide a reliable compromise between 

the circuit/system designer and the fabrication engineer. In general the circuit designers expect smaller 

layouts for improved performance and decreased silicon area. On the other hand, the process engineer like 

those design rules that result in a controllable and reproducible process. In fact there is a need of compromise 

for a competitive circuit to be produced at a reasonable cost. 

One of the important factors associated with design rules is the achievable definition of the process line. For 

example, it is found that if a 10: 1 wafer stepper is used instead of a 1: 1 projection mask aligner; the level- 

to-level registration will be closer. Design rules can be affected by the maturity of the process line. For 

example, if the process is mature, then one can be assured of the process line capability, allowing tighter  

designs with fewer constraints on the designer. 

The simple and well known design rules that are widely used in the design of multiproject chips are 'lambda 

(λ)-based' design rules developed by Mead and Conway . 

Lambda-based Design Rules : 

In this Lambda –base design rules all paths in all layers will be dimensioned in λ units and subsequently λ 

can be allocated an appropriate value compatible with the feature size of the fabrication process. These 

design rules are such that, if correctly obeyed, the mask layouts will produce working circuits for a range of 

values allocated to λ. For example, λ can be allocated a value of 1.0µm so that minimum feature size on chip 

will be 2 µm (2λ). Design rules, also, specify line widths, separations, and extensions in terms of λ. Design 

rules can be conveniently set out in diagrammatic form as shown in Fig.(a) for wires , and the Fig.(b) for 

extensions and separations associated with transistor layouts. 
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Fig.(a). Design rules for wires (n-MOS and p-MOS) 
 

 

 

 

Fig.(b). Transistor design rules (n-MOS, p-MOS and c-MOS) 

Contact Cuts : 

W5h5ile making contacts between poly-silicon and diffusion in nMOS circuits it should be remembered that 

there are three possible approaches--poly. to metal then metal to diff., or a 



buried contact poly. to diff. , or a butting contact (poly. to diff. using metal). Among the three the latter two, 

the buried contact is the most widely used, because of advantage in space and a reliable contact. At one time 

butting contacts were widely used , but now a days they are superseded by buried contacts. 

In CMOS designs, poly. to diff. contacts are always made via metal. A simple process is followed for making 

connections between metal and either of the other two layers (as in Fig.a), The 2λ. x 2λ. contact cut indicates 

an area in which the oxide is to be removed down to the underlying polysilicon or diffusion surface. When 

deposition of the metal layer takes place the metal is deposited through the contact cut areas onto the 

underlying area so that contact is made between the layers. 

The process is more complex for connecting diffusion to poly-silicon using the butting contact approach 

(Fig.b), In effect, a 2λ. x 2λ contact cut is made down to each of the layers to be joined. The layers are butted 

together in such a way that these two contact cuts become contiguous. Since the poly-silicon and diffusion 

outlines overlap and thin oxide under poly- silicon acts as a mask in the diffusion process, the poly-silicon and 

diffusion layers are also butted together. The contact between the two butting layers is then made by a metal 

overlay as shown in the Fig. 

 

Fig.(a) . n-MOS & C-MOS Contacts 
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Fig.(b). Contacts poly-silicon to diffusion 
 

 

In buried contact basically, layers are joined over a 2λ. x 2λ. area with the buried contact cut extending by 1λ, 

in all directions around the contact area except that the contact cut extension is increased to 2λ. in diffusion 

pat
5

h
7

s leaving the contact area. This helps to avoid the formation of unwanted transistors .So, this buried 

contact approach is simpler when compared to others. The, poly-silicon is deposited directly on the underlying 

crystalline wafer. When diffusion takes place, impurities will diffuse into the poly-silicon as well as into the 

diffusion region within the contact area. Thus a satisfactory connection between poly-silicon and diffusion is 

ensured. Buried contacts can be smaller in area than their butting contact counterparts and, since they use no 



metal layer, they are subject to fewer design rule restrictions in a layout. 

Double metal MOS process rules : 

In the MOS design rules a powerful design process is achieved by adding a second metal layer. This gives a 

much greater degree of freedom, in distributing global VDD and Vss(GND) rails in a system. From the overall 

chip inter-connection aspect, the second metal layer in particular is important and, although the use of such a 

layer is readily envisaged, its disposition relative to its connection. to other layers using metal1 to metal 2 

contacts, called vias ,can be readily established . 

Usually, second level metal layers are coarser than the first (conventional) layer and the isolation layer 

between the layers may also be of relatively greater thickness. To distinguish contacts between first and 

second metal layers, they are known as vias rather than contact cuts. The second metal layer representation is 

color coded dark blue (or purple). 

The important process steps for a two-metal layer process are given  below. 

The oxide below the first metal layer is deposited by atmospheric chemical vapor deposition (CVD) and the 

oxide layer between the metal layers is applied in a similar manner. Depending on the process, removal of 

selected areas of the oxide is accomplished by plasma etching, which is designed to have a high level of 

vertical ion bombardment to allow for high and uniform etch rates. Similarly, the bulk of the process steps for 

a double polysilicon layer process are similar in nature to those already described, except that a second thin 

oxide layer is grown after depositing and patterning the first polysilicon layer (Poly.1) to isolate it from the 

now to be deposited second poly. layer (Poly.2). The presence of a second poly. layer gives greater flexibility 

in interconnections and also allows Poly.2 transistors to be formed by intersecting Poly. 2 and diffusion. 

The important features of double metal process are summarized as follows : 

 Use the second level metal for the global distribution of power buses, that is, VDD and GND ( Vss), and 

for clock lines.

 Use the first level metal for local distribution of power and for signal lines.

 Lay out the two metal layers so that the conductors are mutually orthogonal wherever possible.

 
CMOS Lambda-based Design Rules: 

The CMOS fabrication process is more complex than nMOS fabrication . In a CMOS process, there are nearly 

100 actual set of industrial design rules . The additional rules are concerned with those features unique to p- 

well CMOS, such as the p-well and p+ mask and the special 'substrate' contacts. The p-well rules are shown in 

the diagram below. 
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In the diagram above each of the arrangements can be merged into single split contacts. 
 

 

 

 
From the above diagram it is also clear that split contacts may also be made with separate cuts. 

 

 

Fig. Particular rules for p-well CMOS Process. 

Th5e9CMOS rules are designed based on the extensions of the Mead and Conway concepts and also by 

excluding the butting and buried contacts the new rules for CMOS design are formed. These rules for CMOS 

design are implemented in the above diagrams. 

General Observations on the Design Rules : 

The microscopic dimensions of Silicon circuits always cause some problems in the design process.The major 



problem is presented by possible deviation in line widths and in interlayer registration. If the line widths are 

too small, it is possible for lines to be discontinuous in places. If separate paths in a layer are placed too close 

together, it is possible that they will merge in places or interfere with each other. 

For the lambda-based rules , the design rules are formulated in terms of a length unit λ which is related to the 

resolution of the process λ may be viewed as a limit on the width deviation of a feature from its ideal 'as 

drawn' size and also as a bound on the maximum misalignment of any one mask. In the worst case, these 

effects may combine to cause the relative position of feature edges on different mask levels to deviate by as 

much as 2λ in their interrelationship. Inevitably, a consequence of using the lambda-based concept is that 

every dimension must be rounded up to whole λ values and this leads to layouts which do not fully exploit the 

capabilities of the process. 

Similar concepts underlie the establishment of 'micron-based' rule sets, but actual dimensions are given so that 

full advantage can be taken of the fabrication line capabilities and tighter layouts result. 

Layout rules, therefore, provide strict guidelines for preparing the geometric layouts which will be used to 

configure the actual masks used during fabrication and can be regarded as the main communication link 

between circuit/systems designers and the process engineers engaged in manufacture. The goal of any set of 

design rules should give optimize yield while keeping the geometry as small as possible without 

compromising the reliability of the finished circuit. On the questions of yield and reliability, even the 

conservative nature of the lambda based rules can stand reevaluation when these two factors are of paramount 

importance. In particular, the rules associated with contacts can be improved upon in the light of experience.  

Fig.(a) sets out aspects that may be observed for high yield and in high reliability situations. In our proposed 

scheme of events in creating stick layouts for CMOS, it is assumed that poly. and metal can both freely cross 

well boundaries and this is indeed the case, but we should be careful to try to exclude poly. from areas which 

lie within p+ mask areas where possible. The reason for this is that the resistance of the poly. layer is reduced 

in current processes by n- type doping. Clearly the p+ doping which takes place inside the p+ mask will also 

dope the poly. which is already in place when the p+ doping step takes place. This results in an increase in the 

n- doping poly. resistance which may be significant in certain parts of a system. 
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The 3λ. metal width rule is a conservative one but is implemented to allow for the fact that the metal layer is 

deposited after the others and on top of them and several layers of silicon dioxide, so that the surface on which 

it sits is quite 'mountainous' . The metal layer is also light-reflective and these factors combine to result in poor 

edge definition. In double metal the second layer of metal has an even more uneven terrain on which to be 

deposited and patterned. Hence metal 2 is often wider than metal 1. 

Metal to metal separation is also large and is brought about mainly by difficulties in defining metal edges 

accurately during masking operations on the highly reflective metal. All diffusion processes are such that 

lateral diffusion occurs as well as impurity penetration from the surface. Hence the separation rules for 

diffusion allow for this and relatively large separations are specified. This is particularly the case for the p-well 

diffusions which are deep diffusions and thus have considerable lateral spread. Transitions from thin gate 

oxide to thick field oxide in the oxidation process also use up space and this is another reason why the lambda- 

based rules require a minimum separation between thinox regions of 3λ. In effect, this implies that the 

minimum feature size for thick oxide is 3λ.The simplicity of the lambda-based rules makes this approach to 

design an appropriate one for the novice chip designer and also, perhaps, for those applications in which we 

are not trying to achieve the absolute minimum area and the absolute maximum performance. Because 

lambda-based rules try 'to be all things to all people', they do suffer from least common denominator effects 

and from the upward rounding of all process line dimension parameters into integer values of lambda. 

The performance of any fabrication line in this respect clearly comes down to a matter of tolerances and 

definitions in terms of microns (or some other suitable unit of length).Thus, expanded sets of rules often 

referred to as micron-based rules are available to the more experienced designer to allow for the use of the full 

cap6a1bility of any process. Also, many processes offer additional layers, which again adds to the possibilities 

presented to the designer. In order to properly represent these important aspects, the next section introduces 

Orbit Semiconductor's 2µm feature size double metal, double poly. n-well CMOS rules which also offer a 

BiCMOS capability. 



UNIT - 3 

VLSI Interconnects 

The wires linking transistors together are called interconnect and play a major role in the performance of 

modern systems. In the early days of VLSI, transistors were relatively slow . Wires were wide and thick and 

thus had low resistance. In modern VLSI Processes, transistors switch much faster. Meanwhile, wires have 

become narrower, driving up their resistance to the point, that in many signal paths, the wire RC delay exceeds 

gate delay. 

A wire is a distributed circuit with a resistance and capacitance per unit length. Its behavior can be 

approximated with a number of lumped elements. Three standard approximation are the L-model, π-model, 

and T-model, so-named because of their shapes. Figure shows how a distributed RC circuit is equivalent to N 

distributed RC segments of proportionally smaller resistance and capacitance, and how these segments can be 

modeled with lumped elements. 

 

The L-model is a poor choice because a large number of segments are required for accurate results. The π- 

model is much better; three segments are sufficient to give results accurate to 3% . 

Following are the effects of interconnects 

Delay: Interconnect increases circuit delay for two reasons. First, the wire capacitance adds loading to each 

gate. Second, long wires have significant resistance that contributes distributed 

RC delay or flight time. wire delay grows quadratically with length. Using thicker and wider wires,lower- 

resistance metals such as copper, and lower-dielectric constant insulators helps, but long wires nevertheless 

often have unacceptable delay. Repeaters can be used to break a long wire into multiple segments such that the 

overall delay becomes a linear function of length. Polysilicon and diffusion wires have high resistance, even if 

silicided. Diffusion also has very high capacitance. 

Energy: The switching energy of a wire is set by its capacitance. Long wires have significant capacitance and 

thus require substantial amounts of energy to switch. 

crosstalk : wires have capacitance to their adjacent neighbors as well as to ground. When wire A switches, it 

tends to bring its neighbor B along with it on account of capacitive coupling, also called crosstalk. If B is 

supposed to switch simultaneously, this may increase or decrease the switching delay. If B is not supposed to 

switch, crosstalk causes noise on B. We will see that the impact of crosstalk depends on the ratio of Cadj to the 

total capacitance. Note that the load capacitance is included in the total, so for short wires and large loads, the 

load capacitance dominates and crosstalk is unimportant. Conversely, crosstalk is very important for long 

wi6re2s. 

Reliability issues in CMOS VLSI 

Reliability has always been a concern for integrated circuit designers due to the small size of the devices and 

the natural variations that occur in manufacturing processes. Modern design-for-manufacturability and design- 

for yield techniques are based on a fundamental understanding of the failure mechanisms of integrated circuits. 



 

Fig : 

Traditional VLSI manufacturing processes yielded chips that were remarkably reliable over a long period. 

Figure illustrates the general form of failures vs. time for traditional processes. This curve is known as the 

bathtub curve because of its shape—many chips failed in the first few hours of operation, then few failures 

occurred for years, and finally chips started to fail at a higher rate as they wore out. 

Early chip failures are known as infant mortality; it may be caused by a variety of fabrication flaws that 

create marginal structures such as thin wires or malformed transistors. One commonly-used model for chip 

reliability is an exponential probability for failure . 

This model assumes that the failure rate starts high and rapidly decreases. Manufacturers generally burn in 

their chips for some period by running them with power so that marginal chips will fail at the factory rather 

than in the hands of the customer. 

The bathtub curve concerns itself with hard failures, meaning permanent functional failures of the chip. 

Transient failures, which cause errors on certain outputs, were not a major concern for quite some time in 

digital circuits, although they have long been a concern in memories. Transient failures can come from several 

causes, including bit flips and timing errors. 

The most common metric for failure rates is mean time to failure (MTTF). This metric defines the mean time 

to the next occurrence of a given failure mechanism. Based on MTTF, we can determine other interesting 

metrics, such as lifetime. 

Semiconductor manufacturing processes are complex and build many different structures. As a result, several 

different important failure mechanisms have been identified for traditional VLSI processes 

• diffusion and junctions Crystal defects, impurity precipitation, mask misalignment, surface contamination. 

• oxides Mobile ions, pinholes, interface states, hot carriers, time dependent dielectric breakdown. 

• metallization Scratches and voids, mechanical damage, non-ohmic contacts, step coverage, weak adhesion, 

improper thickness, corrosion, electromigration, stress migration. 

• passivation Pinholes and cracks, thickness variations, contamination, surface inversion. 

Several mechanisms stand out: time-dependent dielectric breakdown (TDDB), hot carriers, negative bias 

tem63perature instability (NTBI), electromigration, stress migration and soft errors. Some of these failure 

mechanisms target transistors while others come from interconnect. 

TDDB Time-dependent dielectric breakdown occurs because the electric fields across gate oxides induce 

stresses that damage the oxide. Small transistors require very thin oxides that are more susceptible to this form 

of damage. The traditional model for TDDB failure rates is known as Black’s equation 



 

In this formula, A is a constant, is the activation energy in eV, E is the electric field intensity in MV/cm,  is 

the electric field intensity coefficient in cm/MV, k is Boltzmann’s constant, and T is the absolute temperature. 

A hot carrier is a carrier that gains enough energy to jump from the silicon substrate into the gate oxide. As 

these hot carriers accumulate, they create a space charge in the oxide that affects the transistor’s threshold 

voltage and other parameters. Several factors, such as power supply voltage, channel length, and ambient 

temperature can affect the rate at which hot carriers are produced. 

Negative bias temperature instability is particular to pMOS devices. It refers to shifts in Vth/gm due to stress 

that introduces interface states and space charge. Interestingly, this degradation can be reversed by applying a 

reverse bias to the transistor. As a result, it is not a significant failure mechanism for p-type transistors whose 

bias voltages change from forward to reverse regularly but is very important for DC-biased transistors. 

Electromigration is a degenerative failure mechanism for wires that we touched upon before. Aluminum 

wiring includes grains that carry many defects; these grain boundaries are the most important source of 

electromigration problems. 

stress migration Stress migration is caused by mechanical stress and can occur even when no current flows 

through the wire. These stresses are caused by the different thermal expansion coefficients of the wires and the 

materials in which they reside. Failures can be caused by long-term exposure to moderate temperatures in the 

range. Failures can also occur due to short-term stresses at very high temperatures. 

soft errors Soft errors cause memory cells to change state. Soft errors can be caused by alpha particles that 

generate excess carriers as they travel through the substrate. The materials used in packages include small 

amounts of uranium and thorium, which is still enough to cause noticeable rates of soft errors. 

Latching: 

Using many tub ties in each tub makes a low-resistance connection between the tub and the power supply. 

If that connection has higher resistance, parasitic bipolar transistors can cause the chip to latch-up, 

inhibiting normal chip operation. 

 

 

 



 

Figure 2-11 shows a chip cross-section which might be found in an inverter or other logic gate. The MOS 

transistor and tub structures form parasitic bipolar transistors: npn transistors are formed in the p-tub and pnp 

transistors in the n-tub. Since the tub regions are not physically isolated,current can flow between these 

parasitic transistors along the paths shown as wires. Since the tubs are not perfect conductors, some of these 

paths include parasitic resistors; the key resistances are those between the power supply terminals and the 

bases of the two bipolar transistors. 

The parasitic bipolar transistors and resistors create a parasitic silicon controlled rectifier, or SCR. The 

schematic for the SCR and its behavior are shown in Figure 2-12. The SCR has two modes of operation. When 

both bipolar transistors are off, the SCR conducts essentially no current between its two terminals. As the 

voltage across the SCR is raised, it may eventually turn on and conducts a great deal of current with very little 

voltage drop. The SCR formed by the n- and p-tubs,when turned on, forms a high-current, low-voltage 

connection between VDD and VSS. Its effect is to short together the power supply terminals. When the SCR is 

on, the current flowing through it floods the tubs and prevents the transistors from operating properly. In some 

cases, the chip can be restored to normal operation by disconnecting and then reconnecting the power supply; 

in other cases the high currents cause permanent damage to the chip. 

The switching point of the SCR is controlled by the values of the two power supply resistances Rs and Rw. 

Each bipolar transistor in the SCR turns on when its base-to-emitter voltage reaches 0.7 V; that voltage is 

controlled by the voltage across the two resistors. The higher the resistance, the less stray current through the 

tub is required to cause a voltage drop across the parasitic resistance that can turn on the associated transistor. 

Adding more tub ties reduces the values of Rs and Rw. The maximum distance between tub ties is chosen to 

ensure that the chip will not 

latch-up during normal operation. 
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Fig 9.4 Schematic of electromigration causing failure. (a) Early stages. Wire occupies the entire space and the curre 

goes through the metal. Current density is moderate (b) Void formation leads to decreased area available for 

conduction and increased current density. Acceleration of failure. 

 
 

n the beginning, the metal would fill the space between the insulators and the current density would be at a 

certain level (Fig 9.4a). If sufficient atoms move due to electromigration, then a small void will form. Now the 

all current has to go through the metal and hence near the void region, the current density will increase. 

The electrical resistance of the metal line is also higher now, because the electrical resistance is 

inversely proportional to the cross sectional area. This results in larger heat release and hence higher 

local temperature. At higher temperatures, the metal atom diffusivity is higher, which makes it easier to ‘push’ 

the atoms. The increased current density and higher temperature accelerates the formation of voids and finally 

esults in the circuit failure. 

The extent of electromigration movement depends on the nature of the material. For example, materials such as 

opper, tungsten and gold have good electro migration resistance. We must note the difference between electrical 

esistance and electro migration resistance clearly. Electrical resistance indicates the resistance to movements of 

lectrons. We want good electrical conductors (i.e. low electrical resistance). At the same time, we want materials 

hich have high electro migration resistance. 

 
If the electro migration resistance is poor, then after many hours of operation, the resistance of one or few wires 

ill increase dramatically. It can lead to the failure of the chip. These types of failures, where the chip originally 

unctions well and after few months of operation fails, are called “reliability issues”. This means that the chip 

ppears to be good during testing in the fab, but it is not reliable and after sometime it can fail. 

luminum has low electromigration resistance. To enhance its electromigration resistance, usually a small amount 

f Cu is added during the deposition of Al. Similarly, a small amount of Si is also added to Al. This is because Si 

as the tendency to dissolve into aluminum and the silicon in the insulator (silicon dioxide) may diffuse into 

luminum. If the aluminum is already saturated with silicon, then further dissolution of Si in Al will not be possible. 

hus, both Si and Cu are added in small quantities (1% for example) in the aluminum lines to minimize silicon 

issolution and electromigration, respectively. Tungsten has a good electromigration resistance and hence the vias or 

ontacts made of tungsten are quite immune to this issue. 

he average time for failure, which is called MTF or mean time to fail, depends on the current density and the 



` 

mperature. Usually if the wires are made with large grains, that is large crystals then it will not be easy to break the 

ire. If the size and the arrangement (that is the orientation of the grains) are good then the electro migration 

esistance will be high and the chip will not fail easily. 

n order to test whether a material or chip will function for a long time without failure, frequently the chip is tested at 

igh temperature. This is called high temperature operation test or HTOT. Sometimes the chip is also tested at a high 

mperature and high humidity. This is called highly accelerated stress test or HAST. Hence in every batch few chips 

ill be tested using this to understand whether the chips made during those processes are prone to failure in the 

edium term. 

he length of the metal line and the current density passing through that determine the MTF. The minimum value of 

e product of length and current density (L * j) needed for electromigration to cause catastrophic failure is called 

 lech product, named after I.A. Blech, who proposed it first. The higher the current density or longer the line, more t 

hance of failure by electromigration. For a given current density and material choice (Cu or Al), the critical length 

minimum length) above which electromigration can cause failure is called Blech length. 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

.UNIT-IV 

GATE LEVEL DESIGN 
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UNIT 4 

Introduction 

The module (integrated circuit) is implemented in terms of logic gates and interconnections between these 

gates. Designer should know the gate-level diagram of the design. In general, gate-level modeling is used for 

implementing lowest level modules in a design like, full-adder, multiplexers, etc. 

Boolean algebra is used to represent logical(combinational logic) functions of digital circuits. A combinational 

logic expression is a mathematical formula which is to be interpreted using the laws of Boolean algebra. Now 

the goal of logic design or optimization is to find a network of logic gates that together compute the 

combinational logic function we want. 

For example, given the expression a+b , we can compute its truth value for any given values of a and b , and 

also we can evaluate relationships such as a+b = c. but logic design is difficult for many reasons: 

• We may not have a logic gate for every possible function, or even for every function of n inputs. 

• Not all gate networks that compute a given function are alike-networks may differ greatly in their area and 

speed. 

• Thus combinational logic expressions are the specification, 

• A logic gate is an idealized or physical device implementing a Boolean function, that is, it performs a logical 

operation on one or more logic inputs and produces a single logic output. 

• Logic gates are primarily implemented using diodes or transistors acting as electronic switches, but can also 

be constructed using electromagnetic relays (relay logic), fluidic logic, pneumatic logic, optics, molecules, or 

even mechanical elements. 

• With amplification, logic gates can be cascaded in the same way that Boolean functions can be composed, 

allowing the construction of a physical model of all of Boolean logic. 

• simplest form of electronic logic is diode logic. This allows AND and OR gates to be built, but not inverters, 

and so is an incomplete form of logic. Further, without some kind of amplification it is not possible to have 

such basic logic operations cascaded as required for more complex logic functions. 

• To build a functionally complete logic system, relays, valves (vacuum tubes), or transistors can be used. 

• The simplest family of logic gates using bipolar transistors is called resistor-transistor logic (RTL). Unlike 

diode logic gates, RTL gates can be cascaded indefinitely to produce more complex logic functions. These 

gates were used in early integrated circuits. For higher speed, the resistors used in RTL were replaced by 

diodes, leading to diode-transistor logic (DTL). 

• Transistor-transistor logic (TTL) then supplanted DTL with the observation that one transistor could do the 

job of two diodes even more quickly, using only half the space. 

• In virtually every type of contemporary chip implementation of digital systems, the bipolar transistors have 

been replaced by complementary field-effect transistors (MOSFETs) to reduce size and power consumption 

still further, thereby resulting in complementary metal–oxide–semiconductor (CMOS) logic. that can be 

described with Boolean logic. 



sum) 

cMOS logic gates and other complex gates 

General logic circuit Any Boolean logic function (F) has two possible values, either logic 0 or logic 1. For 

some of the input combinations, F = 1 and for all other input combinations, F = 0. So in general, any Boolean 

logic function can be realized using a structure as shown in figure. 

 

 

 

 

 

 

 

 

 

• The switch S1 is closed and switch S2 is open for input combinations that produces F = 1. 

• The switch S1 is open and switch S2 is closed for input combinations that produces F = 1. 

• The switch S1 is open and switch S2 is open for input combinations that produces F = 0. 

Thus the output (F) is either connected to VDD or the ground, where the logic 0 is represented by the ground 

and the logic 1 is represented by VDD. So the requirement of digital logic design is to implement the pull-up 

switch(S1) and the pull-down switch(S2). 

CMOS static logic 

A generalized CMOS logic circuit consists of two transistor nets nMOS and pMOS. The pMOS transistor net 

is connected between the power supply and the logic gate output called as pull-up network , Whereas the 

nMOS transistor net is connected between the output and ground called as pull-down network. Depending on 

the applied input logic, the PUN connects the output node to VDD and PDN connects the output node to the 

ground. 

 
 

 

 
The transistor network is related to the Boolean function with a straight forward design procedure: 

• Design the pull down network (PDN) by realizing, AND(product) terms using series-connected nMOSFETs. 

OR (sum) terms using parallel-connected nMOSFETS. 

• Design the pull-up network by realizing,AND(product) terms using parallel-connected nMOSFETs. OR 
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(  terms using series-connected nMOSFETS. 

• Add an inverter to the output to complement the function. Some functions are inherently negated, such as 

NAND,NOR gates do not need an inverter at the output terminal. 



CMOS inverter 

A CMOS inverter is the simplest logic circuit that uses one nMOS and one pMOS transistor. The nMOS is 

used in PDN and the pMOS is used in the PUN as shown in figure. 

 

Working operation 

1) When the input Vin is logic HIGH, then the nMOS transistor is ON and the pMOS transistor is OFF. 

Thus the output Y is pulled down to ground (logic 0) since it is connected to ground but not to source VDD. 

2) When the input Vin is logic LOW, then nMOS transistor is OFF and the pMOS transistor is ON, Thus 

the output Y is pulled up to VDD(logic 1) since it is connected to source via pMOS but not to ground. 

 

 

 

 

 

 

 

 

 

 

 
CMOS NAND gate 

The two input NAND function is expressed by Y=A.B 

Step 1 Take complement of Y 

Y= A.B = A.B 

Step 2 Design the PDN In this case, there is only one AND term, so there will be two nMOSFETs in series as 

shown in figure. 

Step 3 Design the PUN. In PUN there will be two pMOSFETs in parallel , as shown in figure 
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inally join the PUN and PDN as shown in figure which realizes two –input NAND gate. Note that we have 

realized y, rather tat Y because the inversion is automatically provided by the nature of the CMOS circuit 

operation, 

 

 

 

 

 

 

 

 

 

 

 

 
Working operation 

1) Whenever at least one of the inputs is LOW, the corresponding pMOS transistor will conduct while 

the corresponding nMOS transistor will turn OFF. Subsequently, the output voltage will be HIGH. 

2) Conversely, if both inputs are simultaneously HIGH, then both pMOS transistors will turn OFF, and 

the output voltage will be pulled LOW by the two conducting nMOS transistors. 

CMOS NOR gate 

The two input NOR function is expressed by Y=A+B 

Step 1 Take complement of Y,Y= A+B = A+B 

Step 2 Design the PDN In this case, there is only one OR term, so there will be two nMOSFETs connected in 

parallel, as shown in figure. 

Step 3 Design the PUNIn PUN there will be two pMOSFETs in series , as shown in figure 

 

Finally join the PUN and PDN as shown in figure which realizes two –input NAND gate. Note that we have 

realized y, rather tat Y because the inversion is automatically provided by the nature of the cMOS circuit 

operation, 

Working operation 

1) Whenever at least one of the inputs is LOW, the corresponding pMOS transistor will conduct while the 
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corresponding nMOS transistor will turn OFF. Subsequently, the output voltage will be HIGH. 

2) Conversely, if both inputs are simultaneously HIGH, then both pMOS transistors will turn OFF, and the 

output voltage will be pulled LOW by the two conducting nMOS transistors. 



 
Complex gates in CMOS logic 

A complex logic gate is one that implements a function that can provide the basic NOT, AND and OR 

operation but integrates them into a single circuit. CMOS is ideally suited for creating gates that have logic 

equations by exhibiting the following, 

An AOI logic equation is equivalent to a complemented SOP from, while an AOI equation is equivalent to a 

complemented POS structure. In CMOS, output always produces NOT operation acting on input variable. 

1) AOI Logic Function (OR) Design of XOR gate using CMOS logic. 

AND-OR-INVERT logic function(AOI) implements operation in the order AND,OR,NOT. For example , 

 
 

let us consider the function Y = AB+CD i.e., Y = NOT((A AND B)OR (C AND D)) The AOI logic gate 

implementation for Y 

 

 

 

 

 

 

 

 

 

CMOS implementation for Y 

Step 1: Draw A.B (AND) function first by connecting 2 nMOS transistors in series. 
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2: Draw C.D implementation, by using 2 nMOS transistors in series. 
 

 
 

Step 3: Y = A.B+C.D , In this function A.B and C.D are added, for addition , we have to draw parallel 

connection. So, A.B series connected in parallel with C.D as shown in figure. 

 
 

Step 4: Draw pMOS connection, 

 

 In nMOS A,B connected in series. So, in pMOS side, A.B should be connected in parallel.

 

 In nMOS C,D connected in series. So, in pMOS side, C.D should be connected in parallel.

 

 A.B and C.D networks are connected in parallel in nMOS side. So, in pMOS side, A.B and C.D networks 

should be connected in series.

 In pMOS multiplication should be drawn in parallel, then addition should be drawn in series as shown in 

figure.
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Step 5: Take output at the point in between nMOS and pMOS networks. 



 

1) OAI Logic Function (OR) Design of XNOR gate using CMOS logic. 

OR-AND-INVERT logic function(AOI) implements operation in the order OR,AND,NOT. For example ,let 

us consider the function Y = (A+B).(C+D) i.e., Y = NOT((A OR B)AND (C OR D)) 

The OAI logic gate implementation for Y 
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MOS implementation for Y 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

SWITCH LOGIC 

1) Switch logic is mainly based on pass transistor or transmission gate. 

2) It is fast for small arrays and takes no static current from the supply,  VDD. Hence power 

dissipation of such arrays is small since current only flows on switching. 

3) Switch (pass transistor) logic is analogous to logic arrays based on relay contacts, where in path 

through each switch is isolated from the logic levels activating the switch. 

PASS TRANSISTOR 

1) This logic uses transistors as switches to carry logic signals from node to node instead of 

connectiong output nodes directly to VDD or ground(GND) 

2) If a single transistor is a switch between two nodes, then voltage degradation.equal to vt 

(threshold voltage) for high or low level depends up on nMOS or pMOS logic. 
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3) When using nMOS switch logic no pass transistor gate input may be driven through one or more 

pass transistors as shown in figure. 



 

 

4) Since the signal out of pass transistor T1 does not reach a full logic 1 by threshold voltage effects 

signal is degraded by below a tru e logic 1, this degraged voltage would not permit the output of T2 to reach an 

acceptable logic 1 level. 

Advantages 

They have topological simplicity. 

1) Requires minimum geometry. 

2) Do not dissipate standby power, since they do not have a path from supply to ground. 

Disadvantages 

1) Degradation in the voltage levels due to undesirable threshold voltage effects. 

2) Never drive a pass transistor with the output of another pass transistor. 

TRANSMISSION GATE 

1) It is an electronic element, good non-mechanical relay built with CMOS technology. 

2) It is made by parallel combination of an nMOS and pMOS transistors with the input at gate of one 

transistor being complementary to the input at the gate of the other as shown in figure. 

3) Thus current can flow through this element in either direction. 

4) Depending on whether or not there is a voltage on the gate, the connection between 

the input and output is either low resistance or high-resistance, respectively Ron = 100Ω and Roff > 5 MΩ. 

Operation 

• When the gate input to the nMOS transistor is ‘0’ and the complementary ‘1’ is gate input to the pMOS , 

thus both are turned off. 

• When gate input to the nMOS is ‘1’ and its complementary ‘0’ is the gate input to the pMOS , both are 

turned on and passes any signal ‘1’ and ‘0’ equally without any degradation. 

• The use of transmission gates eliminates the undesirable threshold voltage effects which give rise to loss of 

logic levels in pass-transistors as shown in figure. 
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Advantages 

1) Transmission gates eliminates the signal degradation in the output logic levels. 

2) Transmission gate consists of two transistors in parallel and except near the positive and negative rails. 



Disadvantages 

1) Transmission gate requires more area than nMOS pass circuitry. 

2) Transmission gate requires complemented control signals. 

 
 

“ Transmission gate logic can be used to design multiplexers(selector functions)”. 

Design a 2-input multiplexer using CMOS transmission gates. 

 
 

Figure shows a 2-input multiplexer circuit using CMOS transmission gate. 

If the control input S is low, the TG0 conducts and the output F is equal to A. On the other hand, if the control 

input S is high the TG1 conducts and the output F is equal to B. 

 
ALTERNATIVE GATE CIRCUITS 

CMOS suffers from increased area and correspondingly increased capacitance and delay, as the logic gates 

become more complex. For this reason, designers developed circuits (Alternate gate circuits) that can be used 

to supplement the complementary type circuits . These forms are not intended to replace CMOS but rather to 

be used in special applications for special purposes. 

PSEUDO nMOS Logic 

Pseudo nMOS logic is one type of alternate gate circuit that is used as a supplement for the complementary 

MOS logic circuits. In the pseudo-nMOS logic, the pull up network (PUN) is realized by a single pMOS 

transistor. The gate terminal of the pMOS transistor is connected to the ground. It remains permanently in the 

ON state. Depending on the input combinations, output goes low through the PDN. Figure shows the general 

building block of logic circuits that follows pseudo nMOS logic. 
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Here, only the nMOS logic (Qn) is driven by the input voltage, while the gate of p-transistor(Qp) is connected 



to ground or substrate and Qp acts as an active load for Qn. Except for the load device, the pseudo-nMOS gate 

circuit is identical to the pull-down network(PDN) of the complementary CMOS gate. 

The realization of logic circuits using pseudo-nMOS logic is as shown in figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Advantages 

1) Uses less number of transistors as compared to CMOS logic. 

2) Geometrical area and delay gets reduced as it requires less transistors. 

3) Low power dissipation. 

Disadvantages 

1) The main drawback of using a pseudo nMOS gate instead of a CMOS gate is that the always on 

PMOS load conducts a steady current when the output voltage is lower than VDD. 

2) Layout problems are critical. 

DYNAMIC CMOS LOGIC 

A dynamic CMOS logic uses charge storage and clocking properties of MOS transistors to implement logic 

operations. Figure shows the basic building block of dynamic CMOS logic. Here the global clock ø drives 

nMOS evaluation transistor and pMOS precharge transistor. A logic is implemented using an nFET array 

connected between output node and ground. 
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The gate (clock ø) defines two phases, evaluation and precharge phase during each clock cycle. 

Working 

• When clock ø = 0 the circuit is in precharge phase with the pMOS device Mp ON and the evaluation 

nMOS Mn OFF. This establishes a conducting path between VDD and the output allowing Cout to charge to a 

voltage Vout = VDD. Mp is often called the precharge FET. 

• When clock ø = 1 the circuit is in evaluation phase with the pMOS device Mp OFF and the 

evaluation nMOS Mn ON. If the logic block acts like a closed switch the Cout can discharge through logic 

array and Mn, this gives a final result of Vout = VDD, logically this is an output of F = 1. Charge leakage 

eventually drops the output to Vout = 0 Vwhich could be an incorrect logic value. 

The logic formation is formed by three series connected FETs (3-input NAND gate) is shown in figure. 

 

 

The dynamic CMOS logic circuit has a serious problem when they are cascaded. In the precharged phase (ø = 

0) , output of all the stages are pre-charged to logic high. In the evaluation phase (ø = 1), the output of all 

stages are evaluated simultaneously. Suppose in the first stage, the inputs are such that the output is logic low 

after the evaluation. In the second stage, the output of the first stage is one input and there are other inputs. If 

theouther inputs of the second stage are such that output of it discharges to logic low, then the evaluated output 

of the first stage can never make the output of the second stage logic high. Ths is because, by the time the first 

stage is being evaluated, output of the second. Stage is discharged, since evaluation happens simultaneously. 

Remember that the output cannot be charged to logic high in the evaluation phase (ø = 1, pMOSFET in PUN 

is OFF), it can only be retained in the logic high depending on the inputs. 

Advantages 

1) Low power dissipation. 

2) Large noise margin. 

3) 
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Small area due to less number of transistors.\ 



ogic L 

CMOS DOMINO LOGIC 

Standard CMOS logic gates need a PMOS and an NMOS transistor for each logic input. The pMOS transistors 

require a greater area tan the nMOS transistors carrying the same current. So, a large chip area is necessary to 

perform complex logic operations. The package density in CMOS is improved if a dynamic logic circuit, 

called the domino CMOS logic circuit, is used. 

 
Domino CMOS logic is slightly modified version of the dynamic CMOS logic circuit. In this case, a static 

inverter is connected at the output of each dynamic CMOS logic block. The addition of the inverter solves the 

problem of cascading of dynamic CMOS logic circuits. 

 
The circuit diagram of domino CMOS logic structures as shown in figure as follows 

 

 

 

 

 

 

 

 
A domino CMOS AND-OR gate that realizes the function y = AB + CD is depicted in fugure . 

The left hand part of the circuit containing Mn,Mp, T1,T2,,T3,and T4 forms and AND-OR- 

INVERTER (AOI) gate. It derives the static CMOS inverter formed by N2 and P2 in the right- 

hand part of the circuit. The domino gate is activated by the single phase clock ø applied to the NMOS (Mn) 

and the PMOS (Mp) transistors. The load on the AOI part of the circuits is the parasitic load capacitance. 

Working 

• When ø = 0, is ON and Mn is OFF, so that no current flows in the AND-OR paths of the AOI. The 

capacitor CL is charged to VDD through Mp since the latter is ON. The input to the inverter is high, and drives 

the output voltage V0 to logic-0. 

• When ø = 1, Mp is turned OFF and Mn is turned ON. If either (or both) A and B or C and D is at 
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l  -1, C   discharges through either T2,T1 and Mn or T3,T4 and Mp. So , the inverter input is driven to logic-   

0 and hence the output voltage V0 to logic-1. The Boolean expression for the output voltage is Y = AB + CD. 

Note : Logic input can change only when ø = 0. No changes of the inputs are permitted when ø = 1 since a 

discharge path may occur. 



ogic. 

Advantages 

1) Smaller areas compared to conventional CMOS logic. 

2) Parasitic capacitances are smaller so that higher operating speeds are possible. 

3) Operation is free of glitches since each gate can make one transition. 

disadvantages 

1) Non inverting structures are possible because of the presence of inverting buffer. 

2) Charge distribution may be a problem. 

CLOCKED CMOS LOGIC 

The clocked CMOS logic is also referred as C2MOS logic. Figure shows the general arrangement of a clocked 

CMOS (C2MOS) logic. A pull-up p-block and a complementary n-block pull-down structure represent p and 

n-transistors respectively and are used as implement clocked CMOS logic shown in figure. However, the logic 

in this case is connected to the output only during the ON period of the clock. Figure shows a clocked inverter 

circuit which is also belongs to clocked CMOS logic family. The slower rise times and fall times can be 

expected due to owing of extra transistors in series with the output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Working 

• When ø = 1 the circuit acts an inverter , because transistors Q3 and Q4 are ‘ON’ . It is said to be in the 

“evaluation mode”. Therefore the output Z changes its previous value. 

• When ø = 0 the circuit is in hold mode, because transistors Q3 and Q4 becomes ‘OFF’ . It is said to be in the 

“precharge mode”. Therefore the output Z remains its previous value. 

n-p CMOS LOGIC 

Figure shows the another variation of basic dynamic logic arrangement of CMOS logic called as n-p CMOS 
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l         In this, logic the actual logic blocks are alternatively ‘n’ and ‘p’ in a cascaded structure. The clock ø and 

ø- are used alternatively to fed the precharge and evaluate transistors. However, the functions of top and 

bottom transistors are also alternate between precharge and evaluate transistors. 



0 

Working 

• During the pre charge phase ø = 0 , the output of the n-tree gate, OUT 1 OUT3 , are charged to VDD, while 

the output of the p-tree gate OUT2 is pre discharged to 0V. Since the n-tree gate connects pMOS pull-up 

devices, the PUN of the p-tree is turned off at that time. 

• During the evaluation phase ø = 1, the outputs (OUT1,OUT3) of the n-tree gate can only make a 1- 

transition, conditionally turning on some transistors in the p-tree. This ensures that no accidental discharge of 

OUT 2 can occur. 

• Similarly n-tree blocks can follow p-tree gates without any problems, because the inputs to the n-gate are pre 

charged to 0. 

Disadvantages 

Here, the p-tree blocks are slower than the n-tree modules, due to the lower current drive of the pMOS 

transistors in the logic network. 

BASIC CIRCUIT CONCEPTS 

In VLSI design the wiring up (interconnection) of circuits takes place through the various conductive layers 

which are produced by the MOS processing. So, it is necessary to know the resistive and capacitive 

characteristics of each layer. Concepts such as 

• resistance RS and a standard unit of capacitance □cg which helps in evaluating the effects of wiring 

and input and output capacitances. 

• The delays associated with wiring with inverters and with other circuitry evaluated interms of a delay 

unit τ. 

Sheet Resistance RS 

• The sheet resistance is a measure of resistance of thin films that have a uniform thickness. 

• It is commonly used to characterize materials made by semiconductor doping, metal deposition, 

resistive paste printing and glass coating. 

Ex: doped semiconductor regions (silicon or polysilicon ) and resistors. 

• Sheet resistance is applicable to two-dimensional systems where the thin film is considered to be a 

two- dimensional entity. 

Consider a uniform slab of conducting material of resistivity ρ of width W, thickness t and length between 

faces A&B is L. as shown in figure. 
 

Consider the resistance RAB between two opposite faces 
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Where A is area of cross section 



 

 

 

Consider a case in which L = W . It means square of resistive material 

 

 

 

 

Where RS is ohm per square or sheet resistance. 
 
 

 

From the above equation RS is independent of the area of square., for example a 1µm per side square slab of 

the material has same resistance as 1 cm per side square slab of the same material if the thickness is same. 

Hence, the resistance of the MOS layers depend on the thickness and the resistivity of the material of the layer. 

• The thickness of the metal and polysilicon deposited is known by measuring using four probe method. 

• The resistivity of the diffusion layers is measured by measuring the penetration depth of the diffusion regions. 

Sheet resistance concept applied to MOS Transistors and Inverterts: 

Consider the transistor structures by distinguish the actual diffusion (active) regions from the channel regions. 

The simple n-type pass transistor has a channel length L = 2λ and a channel width W=2λ. 

 

 

 

 
 

Hence the channel is square and the channel resistance is 

 

Here the length to width ratio denotes the impedance (Z) and is equal to 1:1. Consider another transistor has a 
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channel length L = 8λ and width W = 2λ. 
 

 

 



Thus, channel resistance 
 
 

Typical sheet resistances of MOS layers are tabulated 
 

Layer RS ohm per square 

5µm Orbit Orbit 1.2µm 

Metal 0.03 0.04 0.04 

Diffusion 15 - 100 20 - 45 20 - 45 

Silicide 2 - 4 --- --- 

Polysilicon 15 - 100 15 - 30 15 - 30 

n- channel 104 2 X 104 2 X 104 

p-channel 2.5 X 104 4.5 X 104 4.5 X 104 

 
Sheet resistance for Inverters 

Consider an nMOS inverter has the channel length 8λ and width 2λ for pull up transistor as shown in figure. 
 

L = 8λ; W = 2λ 

Z = L/W = 4 

Sheet resistance R = Z.RS = 4 X 104 = 40 KΩ 

For pull down transistor the channel length 2λ and width 2λ, then the sheet resistance is 

R = Z.RS = 1 X 104 = 10 KΩ 

He8n8ce Zp.u to Zp.d = 4:1 hence the ON resistance between VDD and VSS is the total series resistance i.e., 

RON = 40 KΩ + 10 KΩ = 50 KΩ 

Consider the simple CMOS inverter as shown in figure. 
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Here the pull up transistor is of p-type device with channel length 2λ and width 2λ. 

Z = L/W =1 

Then Sheet resistance RSP = Z.RS = 1 X 2.5 X 104 = 25 KΩ 

The pull down transistor is of n-type with channel length 2λ and width 2λ. 

Z = L/W =1 

Hence, Sheet resistance RSN = Z.RS = 1 X 104 = 10 KΩ. 

In this case, there is no static resistance between VDD and VSS . Since at any point of time only one transistor is 

ON, but not both. 

When Vin = 1, the ON resistance is 10KΩ Vin = 0, the ON resistance is 25KΩ 

Area capacitance of layers 

From the concept of the transistors, it is apparent that as gate is separated from the channel by gate oxide an 

insulating layer, it has capacitance. Similarly different interconnects run on the chip and each layer is 

separated by silicon dioxide . 

 
For any layer by knowing the dielectric thickness, we can calculate the area capacitance as follows 

 

 
Where, is area of the plates , D is the thickness of Sio2, Є0 s the permittivity of the free space 

nd Єins is the relative permittivity of insulator(Sio2). 
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Typical area capacitance values of MOS circuits 
 

 

 

 

 
 

Layer Value in pF X 10
-4

/ µm
2
 (Relative values in brackets ) 

5µm Orbit Orbit 1.2µm 

Gate to channel 4 (1.0) 8 (1.0) 16 (1.0) 

Diffusion 1 (0.25) 1.75 (0.22) 3.75 (0.23) 

Polysilicon to substrate 0.4 (0.1) 0.6 (0.075) 0.6 (0.038) 

Metal 1 to substrate 0.3 (0.075) 0.33 (0.04) 0.33 (0.02) 

Metal 2 to substrate 0.2 (0.05) 0.17 (0.02) 0.17 (0.01) 

Metal 2 to metal 1 0.4 (0.1) 0.5 (0.06) 0.5 (0.03) 

Metal 1 to poly silicon 0.3(0.075) 0.3 (0.038) 0.3 (0.018) 

 

Standard unit of capacitance □cg 

 

It is defined as the gate – to – channel capacitance of a MOS transistor having W = L . i.e., standard square as 

shown in figure. The unit is denoted by □cg. □cg may be calculated for any MOS process as follows 

 
For 5µm MOS circuits 

 
 

Area/standard square = 5µm X 5µm = 25 µm2 

Capacitance value = 4 X 10-4 pF/ µm2 



Thus, standard value □cg = 25 µm2 X 4 X 10-4 pF/ µm2 = 0.01 pF 

For 2µm MOS circuits 

Area/standard square = 2µm X 2µm = 4 µm2 

Capacitance value = 8 X 10-4 pF/ µm2 

Thus, standard value □cg = 4 µm2 X 8 X 10-4 pF/ µm2 = 0.01 pF 

For 1.2µm MOS circuits 

Area/standard square = 1.2µm X 1.2µm = 1.44 µm2 

Capacitance value = 16 X 10-4 pF/ µm2 

Thus, standard value □cg = 1.44 µm2 X 16 X 10-4 pF/ µm2 = 0.0023 pF 

Calculation for capacitance value 

The calculation of capacitance value is established by the ration between the area of interest and the area of 

standard gate and multiplying this ration by the appropriate relative C value from tabular form. The product will 

give the required capacitance in □cg units. 

Consider the area defined as shown in figure of length 20λ and width 3λ 
 
 

 

Area relative to the standard gate 

Relative area = Area( L X W )/standard gate area 
 

 

= 15 . 

1) consider the area in metal 1 

capacitance to substrate = relative area X relative C value (from table) 

= 15 X 0.075 □cg 

= 1.125 □cg 

2) consider the same area in polysilicon capacitance to substrate = 15 X 0.1□cg 

= 1.5 □cg 

 

3) consider the same area in n- type diffusion capacitance to substrate = 15 X 0.25□cg 

= =3.75 □cg 

 

Consider the following structure which occupies more than one layer as shown in figure and calculate the area 

capacitance value 



 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

while calculating the area value in the above figure neglect the contact region where the metal is connected to 

polysilicon and shielded from the substrate. 

( i)consider the metal area 

Relative area = Area( L X W )/standard gate area 
 

 

 
= 75 

metal capacitance = relative area X relative C value (from table) 

= 75 X 0.075 □cg 

= 5.625 □cg 

3) consider the polysilicon area (excluding the gate region) capacitance to substrate = 15 0.1□cg 

= 1.5 □cg 

3) consider the same area in n- type diffusion capacitance to substrate = 15 X 0.25□cg 

= 3.75 

We know that the transit time (τsd) from source to drain 
 
 

 
Here the Vds varies as Cg charges from 0 volts to 63% of Vdd in period τ. Thus the average value of Vds = 3V. 

For 5µm technology 

 

 
 

Similarly the transition point of an inverter or gate is 0.5 VDD which is approximately equal to 0.63 VDD (time 

 

τsd = 0.13 n sec, τsd τ 



constant). From this we can conclude that we can use the transit time and time constant interchangeably and ‘stray’ 

capacitances are allowed for doubling the theoretical values calculated. 

Thus, τ is used as the fundamental time unit and all timings in a system can be assessed in relation to τ ,Hence for 

5µm MOS technology τ = 0.3 nsec. 

for 2µm MOS technology τ = 0.2 nsec. 

for 1.2µm MOS technology τ = 0.1 nsec. 

INVERTER DELAYS 

Consider the basic nMOS inverter has the channel length 8λ and width 2λ for pull-up transistor and channel length 

of 2λ and width 2λ for pull down transistor. 

Hence the sheet resistance for pull-up transistor is Rp.u = 4RS = 40kΩ and 

sheet resistance for pull-up transistor is Rp.d = 1RS = 10kΩ. 

Since (τ = RC) depends upon the values of R & C, the delay associates with the inverter depend up on whether it is 

being turned on (or ) off. Now, consider a pair of cascaded inverters as shown in figure, then the delay over the pair  

will be constant irrespective of the sense of the logic level transition of the input to the first . 

In general, the delay through a pair of similar nMOS inverters is Td = (1 + Zp.u/Zp.d ) τ 

Assume that τ = 0.3 n sec. 

Then ,Td = (1 + 4) 0.3 

= 5 τ 

Thus, the inverter pair delay for inverters having 4:1 ration is 5τ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Hence, a single 4:1 inverter exhibits undesirable asymmetric delays, Since the delay in turning ON is τ and delay in 

turning OFF is 4τ. 

CMOS inverter pair delay 

When we consider CMOS inverters, the rules for nMOS inverters are not applicable. But we need to consider the 

natural (RS) uneven values for equal size pull up p-transistor and the n-type pull down transistors. 



 

 

Figure shows the theoretical delay associated with a pair of both n and p transistors lambda based inverters. Here 

the gate capacitance is double comparable to nMOS inverter since the input to a CMOS inverter is connected to 

both transistor gate. NOTE: Here  the asymmetry (uneven) of resistance 

values can be eliminated by increasing the width of the p-device channel by a factor of two or three at the same 

time the gate capacitance of p-transistor also increased by the same factor. 

Formal estimation of CMOS inverter delay 

In CMOS inverter by the charging and discharging of a capacitive load CL , we can estimate the Rise time and fall 

time from the following simple analysis. 

Rise time estimation 

In this analysis we assume that the p-device stays in saturation for the entire charging period of the load capacitor 

CL. 

Consider the circuit as follows 
 
 

Saturation current for the p-transistor is given by 
 
 

This current charges CL and since its magnitude is approximately constant, we have 

 

 
 

Substitute the value of Idsp in above equation and then the rise time is 
 

Assume that t = τr when Vout = VDD then 



If Vtp = 0.2VDD, then 
 
 

Fall time estimation 

Consider the circuit for discharge of CL through n-transistor as follows 

 

 

 

 

 

 

By making similar assumptions we can write for fall-time estimation, 
 
 

From the above two estimations we can deduce that 
 
 

 

We know that  
 
 

and hence 

So that the rise time is slower by a factor of 2.5 when using minimum size devices for both n & p. 

• In order to achieve symmetrical operation using minimum channel length we need to make Wp = 2.5 Wn. 

• For minimum size lambda based geometries this would result in the inverter having an input 

capacitance of 

 
1□cg (n-device) + 2.5□cg(p-device) = 3.5□cg 

 

From the above equations we can conclude that 

 
 

1. τr and τf are proportional to 1/VDD 

 

2. τr and τf are proportional to CL 

 

3. τr = 2.5τf for equal n and p- transistor geometries. 

 

 
 

Driving Large capacitive loads 



when signals are propagated from the chip to off chip destinations we can face problems to drive large capacitive 

loads. Generally off chip capacitances may be several orders higher than on chip □cg values. 

CL ≥ 104 □cg 

Where CL denotes offchip load. The capacitances which of this order must be driven through low resistances, 

otherwise excessively long delays will occur. Large capacitance is presented at the input, which in turn slows down 

the rate of change of voltage at input. 

Cascaded Inverters as drivers 

Inverters to drive large capacitive loads must be present low pull-up and pull down resistance. For MOS 

circuits low resistance values imply low L:W ratio(since  ) . Since length L cannot be reduced below the 

minimum feature size, the channels must be made very wide to reduce resistance value. Consider N cascaded 

inverters as on increasing the width factor of ‘f’ than the previous stage as shown in 

 

 

 

 

 

 

figure. 

As the width factor increases, the capacitive load presented at the inverter input increases and the area occupied 

increases also. It is observed that as the width increases, the number N of stages are decreased to drive a particular 

value of CL. Thus with large f(width), N decreases but delay per stage increases for 4:1 nMOS inverters. 

Delay per stage = fτ for ∆Vin 

=4fτ for ∆-Vin 

Where ∆Vin indicates logic 0 to 1 transition and 

∆-Vin indicates logic 1 to 0 transition of Vin 

Toal delay per nMOS pair = 4fτ 

Similarly delay per CMOS pair = 7fτ. 

Calculation for time delay 

Let us assume y = CL/□cg = f N 

Determine the value of f which will minimize the overall delay for a given value of y. Apply logarithms on both 

sides in the above equation 

 

 

 

 
For N even 

ln(y) = ln(f N) 

ln (y) = N ln (f) 

N= ln(y)/ln(f) 

 
 

Total delay = N/2 5fτ 

= 2.5 Nfτ (nMOS) 

(Or) toal delay = N/2 7fτ 

= 3.5Nfτ (CMOS) 
 
 

From above relations, we can write 



Delay α Nfτ 

= ln(y)/ln(f) . fτ 

It can be shown that total delay is minimized if f assumes the value of e for both CMOS and nMOS inverters. 

Assume f = e N = ln(y)/ln(e) 

N = ln(y) 

Overall delay td N even td = 2.5 eNτ (nMOS) 

(or) td = 3.5 eNτ(CMOS) 

Î N odd td = [2.5(N-1) +1] eτ (nMOS) 

td = [3.5(N-1) +2] eτ (CMOS) ( for logical transition 0 to 1) 

( or) td = [ 2.5(N-1) + 4] eτ (nMOS) 

td = [3.5(N-1) +5] eτ (CMOS) (for logical transition 1 to 0) 

Super buffers 

Generally the pull-up and the pull down transistors are not equally capable to drive capacitive loads. This 

asymmetry is avoided in super buffers. Basically, a super buffer is a symmetric inverting or non inverting driver 

that can supply (or) remove large currents and is nearly symmetrical in its ability to drive capacitive load. It can 

switch large capacitive loads than an inverter. An inverting type nMOS super buffer as shown in figure. 

 

 
 

• Consider a positive going (0 to 1) transition at input Vin turns ON the inverter formed by T1 and T2. 

 

• With a small delay, the gate of T3 is pulled down to 0 volts. Thus, device T3 is cut off. Since gate of T4 is 

connected to Vin, it is turned ON and the output is pulled down very fast. 

For the opposite transition of Vin (1 to 0), Vin drops to 0 volts. The gate of transistor T3 is allowed to rise to VDD 

quickly. 

• Simultaneously the low Vin turns off T4 very fast. This makes T3 to conduct with its gate voltage approximately 

equal to VDD. 

• This gate voltage is twice the average voltage that would appear if the gate was connected to the source as in the 

conventional nMOS inverter. 

Now as Idsα Vgs , doubling the effective Vgs increases the current and there by reduces the delay in charging at the 

load capacitor of the output. The result is more symmetrical transition. 

 

 

 

 



Figure shows the non-inverting nMOS super buffer where the structures fabricated in 5µm technology are capable 

of driving capacitance of 2pF with a rise time of 5nsec. 

BiCMOS drivers 

1. In BiCMOS technology we use bipolar transistor drivers as the output stage of inverter and logic gate circuits. 

2. In bipolar transistors, there is an exponential dependence of the collector (output) current on the base to emitter 

(input) voltage Vbe . 

3. Hence, the bipolar transistors can be operated with much smaller input voltage swings than MOS transistors and 

still switch large current. 

4. Another consideration in bipolar devices is that the temperature effect on input voltage Vbe. 

5. In bipolar transistor, Vbe is logarithmically dependent on collector current IC and also other parameters such as 

base width, doping level, electron mobility. 

6. Now, the temperature differences across an IC are not very high. Thus the Vbe values of the bipolar devices 

spread over the chip remain same and do not differ by more than a few milli volts. 

The switching performance of a bipolar transistor driving a capacitive load can be analyzed to begin with the help 

of equivalent circuit as shown in figure. 

 

 

 

 

 
The time ∆t required to change the output voltage Vout by an amount equal to the input voltage is 

∆t = CL/gm 

Where, 

CL is the load capacitance 

gm is the trans conductance of the bipolar transistor. 

The value of ∆t is small because the trans conductance of the bipolar transistors is relatively high. 

There are two main components which reveals the delay due to the bipolar transistors are Tin and TL . 

• Tin is the time required to first charge the base emitter junction of the bipolar (npn) transistor. This time is 

typically 2ns for the BiCMOS transistor base driver. 

         For the CMOS driver the time required to charge the input gate capacitance is 1ns. 

• TL is the time required to charge the output load capacitance . 

• The combined effect of Tin and TL is represented as shown in figure. 



 
 

• Delay of BiCMOS inverter can be described by 

• Delay for BiCMOS inverter s reduced by a factor of hfe as compared with a CMOS inverter. 

• In Bipolar transistors while considering delay another significant parameter is collector resistance Rc through 

which the charging current for CL flows. 

• For a high value of RC, there is a long propagation delay through the transistor when charging a capacitive load. 

• Figure shows the typical delay values at two values of CL as follows. 
 

 

 
 

 

The devices thus have high β, high gm, high hfe and low RC. The presence of such efficient and advantageous 

devices on chip offers a great deal of scope and freedom to the VLSI designer. 

Propagation delays 

Propagation delay is the delay in the propagation of the signal created by the change of logical status at the input to 

create same change at the output. 

(i)Cascaded pass transistors 

Figure shows a chain of four pass transistors driving a capacitive load CL. All the gates are supplied by VDD so that 

a signal can propagate to the output. The lamped RC equivalent circuit is shown in figure, where each transistor is 

modeled by a series resistance and capacitance representing the gate-to-channel capacitance and stray capacitances. 

Them minimum value of R is the turned ON resistance of each enhancement mode pass transistor. 

 



The current through the capacitance at the node with voltage V2 is 

C (dV2 / dt ) ≈ C.∆V2/ ∆t 

The current entering at this node is I1 = (V1 – V2)/R and the current leaving from this node is I2 = (V2 – V3)/R. By 

applying KCL at this node 

IC = I1 – I2 

C . ∆V2/ ∆t = I1 – I2 = ((V1 – V2)- (V2 – V3)) / R 

As the number of sections in the network increases, the circuit parameters become distributed. 

Assume that R and C as the resistance per unit length and the capacitance per unit length respectively. 

C∆* .∆V2/ ∆t = ∆(∆V2)/R.∆X 

Where x is the distance along the network from the input. 

RC dv/dt = d/dx. (dv/dx) = d2V/dx2 

The propagation time τp from a signal to propagate a distance x is 

τp α X2 

By simplifying the analysis if all sheet resistance, gate-to-channel capacitance RS and □cg are lumped together 

R total = nr Rs 

C total = nc□cg 

Where r gives relative resistance per section interms of RS and c gives relative capacitance per section interms of 

□cg . Then the overall delay for n sections is given by 

τp = n2rc(τ) 

It can be shown that the signal delay in a section containing N identical pass transistors driving a matched load (CL 

= Cg) is τp = 0.7 * N(N+1)/2 *RCL 

For large value of N, the quantity (N + 1) can be replaced by N. Since the delay increases with N, the number of 

pass transistors is restricted to 4. A cascade of more pass transistors will produce a very slow circuit and the signal 

needs to be restored by an inverter after every three (or) four pass transsitor. 

Design of long polysilicon wires 

Long polysilicon wires also contribute distributed series R and C as was the case for cascaded pass transistors and 

inconsequence signal propagation is slowed down. This would also be the case for wires in diffusion where the 

value of C may be quite high, and for this reason the designer is discouraged from running signals in diffusion 

except over very short distances. 

 

 

For long polysilicon runs, the use of buffers is recommended. In general, the use of buffers to drive long 

polysilicon runs has two desirable effects. First, the signal propagation is speeded up and second there is a 

reduction in sensitivity to noise. In the diagram the slow rise-time of the signal at the input of the inverter means 

that the input voltage spends a relatively long time in the vicinity of Vinv so that small disturbances due to noise will 

switch the inverter state between ‘0’ and’1’ as shown at the output point. 



Thus , it is essential that long polysilicon wires be driven by suitable buffers to guard against the effects of noise 

and to speed up the rise-time of propagated signal edges. 

Wiring capacitances 

The significant sources of capacitance which contribute to the overall wiring capacitance are as follows 

(i)Fringing fields 

Capacitance due to fringing field effects can be a major component of the overall capacitance of interconnect wires. 

For fine line metallization, the value of fringing field capacitance (Cff) can be of the same order as that of the area 

capacitance. Thus , Cff should be taken into account if accurate prediction of performance is needed. 

Where l = wire length         

t = thickness of wire 

d = wire to substrate separation. 

Then, total wire capacitance 

Cw = Carea + Cff 

(ii)Interlayer capacitances 

From the definition of capacitance itself, it can be said that there exists a capacitance between the layers due to 

parallel plate effects. This capacitance will depend upon the layout i.e., where the layers cross or whether one layer 

underlies another etc., by the knowledge of these capacitances, the accuracy of circuit modeling and delay 

calculations will be improved. It can be readily calculated for regular structures. 

(iii) peripheral capacitance 

1. The source and drain p-diffusion regions forms junctions with the n-substrate (or n-well) at well defined 

and uniform depths. 

2. Similarly, the source and drain n-diffusion regions forms junctions with p-substrate (or p-well) at well 

defined and uniform depths. 

3. Hence, for diffusion regions, each diode thus formed has associated a peripheral (side wall) capacitance 

with it. 

4. As a whole the peripheral capacitance,Cp will be the order of pF/unit length. So its value will be greater 

than Carea of the diffusion region to substrate. 

Cp increases with reduction in source or drain area. 

Total diffusion capacitance is Cdiff = Carea + Cp 

However, as the n and p-active regions are formed by impure implants at the surface of the silicon incase of orbit 

processes, they have negligible depth. Hence Cp is quite negligible in them. 

Typical values are given in tabular form 



Diffusion capacitance Typical values 

5µm 2µm 1.2µm 

Area C (C area) 1.0 × 10-4pF/µm2 1.75 × 10-4pF/µm2 3.75 × 10-4pF/µm2 

Periphery (Cperiph) 8.0 × 10-4pF/µm2 Negligible (assuming implante 

regions of negligible depth) 

negligible 

 

Fan – in and Fan-out 

Fan-in: The number of inputs to a gate is called as fan - in. 

Fan-out: The maximum number of similar gates that a gate can drive while remaining within the guaranteed 

specifications is called as fan-out. 

Effects of Fan-in and Fan-out on propagation delay: 

• An additional input to a CMOS logic gate requires an additional nMOS and pMOS i.e., two additional transistors, 

while incase of other MOS logic gates, it requires one additional transistor. 

• In CMOS logic gates, due to these additional transistors, not only the chip area but also the total effective 

capacitance per gate also increased and hence propagation delay increases. 

• Some of the increase in propagation delay time can be compensated by the size-scaling method. 

• By increasing the size of the device, its current driving capability can be preserved. 

 

• Due to increase in both of inputs and devices size, the capacitance increases, Hence propagation delay will still 

increase with fan-in. 

• An increase in the number of outputs of a logic gate directly adds to its load capacitances. Hence, the propagation 

delay increases with fan-out. 

Fan-In = Number of inputs to a logic gate 

– 4 input NAND has a FI = 4 

– 2 input NOR has a FI = 2, etc. (See Fig. a below.) 

• Fan-Out (FO)= Number of gate inputs which are driven by a particular gate output 

– FO = 4 in Fig. b below shows an output wire feeding an input on four different logic gates 

• The circuit delay of a gate is a function of both the Fan-In and the Fan-Out. 

Ex. m-input NAND: tdr = (Rp/n)(mnCd + Cr + kCg) 

= tinternal-r + k toutput-r 

• where n = width multiplier, m = fan-in, k = fan-out, Rp = resistance of min inverter P Tx, Cg = gate 

capacitance, Cd = source/drain capacitance, Cr = routing (wiring) capacitance. 



 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

• 

Choice of layers 

The following are the constraints which must be considered for the proper choice of layers. 

1. Since the polysilicon layer has relatively high specific resistance (RS), it should not be used for routing 

VDD and VSS (GND) except for small distances. 

2. VDD and GND (VSS) must be distributed only on metal layers, due to the consideration of Rs value. 

3. The capacitive effects will also impose certain restrictions in the choice of layers as follows 

(i) where fast signal lines are required, and in relation to signals on wiring which has relatively higher 

values of RS. 

(ii) The diffusion areas have higher values of capacitance to substrate and are harder to drive. 

4. Over small equipotential regions, the signal on a wire can be treated as being identical at all points. 

5. Within each region the propagation delay of the signal will comparably smaller than the gate delays and 

signal delays caused in a system connected by wires. 

Thus the wires in a MOS system can be modeled as simple capacitors. This concept leads to the establishment of 

electrical rules (guidelines) for communication paths(wires) as given in tabular form. 

Layer Maximum length of communication wire 

Lambda based 

5µm 

µm based (2µm) µm – based(1.2µm) 

Metal Chip wide Chip wide Chip wide 

Silicide 2,000λ NA NA 

Polysilicon 200λ 400µm 250µm 

Diffusion (active) 20λ 100µm 60µm 



 



Introduction 

Most digital functions can be divided into the following categories: 

1.Datapath operators 2.Memory elements 3.Control structures 4.Special-purpose cells 

o I/O 

o Power distribution 

o Clock generation and distribution 

o Analog and RF 

CMOS system design consists of partitioning the system into subsystems of the types listed above.  

Many options exist that make trade-offs between speed, density, programmability, ease of design, 

and other variables. This chapter addresses design options for common datapath operators. The next  

chapter addresses arrays, especially those used for memory. Control structures are most commonly 

coded in a hardware description language and synthesized. 

Datapath operators benefit from the structured design principles of hierarchy, regularity, modularity,  

and locality. They may use N identical circuits to process N-bit data. Related data operators are 

placed physically adjacent to each other to reduce wire length and delay. Generally, data is arranged  

to flow in one direction, while control signals are introduced in a direction orthogonal to the 

dataflow. 

Common datapath operators considered in this chapter include adders, one/zero detectors, 

comparators, counters, shifters, ALUs, and multipliers. 

5.1 Shifters 

Consider a direct MOS switch implementation of a 4X4 crossbar switch as shown in Fig.    5.1. 

The arrangement is quit general and may be readily expanded to 
 

 

Figure 5.1: 4 x 4 crossbar switch. 

accommodate n-bit inputs/outputs. In fact, this arrangement is an overkill in that any input line can 

be connected to any or all output lines-if all switches are closed, then all inputs are connected to all 

outputs in one glorious short circuit. Furthermore, 16 control signals (sw00-sw15), one for each 

transistor switch, must be provided to drive the crossbar switch, and such complexity is highly 



undesirable. An adaption of this arrangement) Recognizes the fact that we can couple the switch gates  

together in groups of four (in this case) and also form four separate groups corresponding to shifts of  

zero, one, two, and three bits. The arrangement is readily adapted so that the inlines also run 

horizontally (to confirm the required strategy). The resulting arrangement is known as barrel shifter  

and a 4X4-bit barrel shifter circuit diagram is given in Fig. 5.2. The interbus switches have their gate  

inputs connected in staircase fashion in group of four and there are now four shift control inputs  

which must be mutually exclusive in active state. CMOS transmission gates may be used in place of  

the simple pass transistor switches if appropriate 

 

Figure 5.2: Barrel shifter 

ADDERS: Addition is one of the basic operation perform in various processing like counting, 

multiplication and filtering. Adders can be implemented in various forms to suit 

different speed and density requirements.The truth table of a binary full adder is shown in Figure 

5.3, along with some functions that will be of use during the discussion of adders. Adder inputs: A, 

 

B 

Carry input: SUM Carry output: CARRY 

Generate signal: G(A • B); occurs when CARRY is internally generated within adder 

Propagate signal: P (A + B); when it is 1, C is passed to CARRY. In some adders 

A ⊕B is used as the P term because it may be reused to generate the sum term. 5.2.1Single-Bit 

Adders 



Probably the simplest approach to designing an adder is to implement gates to 

yield the required majority logic functions. 

From the truth table find sum and carry 

The direct implementation of the above equations is shown in Fig. 5.4 using the gate schematic and 

the transistors is shown in Fig. 5.5. 

 

Figure 5.4: Logic gate implementation of 1-Bit adder 
 

 

 

Figure 5.5: Transistor implementation of 1-Bit adder 

The full adder of Fig. 5.5 employs 32 transistors (6 for the inverters, 10 for the carry circuit, and 16  

for the 3-input XOR). A more compact design is based on the observation that S can be factored to  

reuse the CARRY term as follows: 

SUM = A.B.C + (A + B + C).CARRY 

 

= A.B.C + (A + B + C).A.B + C.(A + B) 



 
 

Figure 5.6: Transistor implementation of 1-Bit adder 

Such a design is shown at the transistor levels in Figure 5.6 and uses only 28 transistors. Note that  

the pMOS network is complement to the nMOS network. 

Here Cin=C 

5.1.2 n-Bit Parallel Adder or Ripple Carry Adder 

A ripple carry adder is a digital circuit that produces the arithmetic sum of two binary numbers. It  

can be constructed with full adders connected in cascaded, with  the carry output from each full  

adder connected to the carry input of the next full adder in the chain. Figure 5.7 shows the 

interconnection of four full adder (FA) circuits to provide a 4-bit ripple carry adder. Notice from 

Figure 5.7 that the input is from the right side because the first cell traditionally represents the least  

significant bit (LSB). Bits a0 and b0 in the figure represent the least significant bits of  the  numbers  

to be added. The sum output is represented by the bits S0-S3. 

5.1.3 Carry lookahead adder (CLA) 

The carry lookahead adder (CLA) solves the carry delay problem by calculating the carry signals in 

advance, based on the input signals. It is based on the fact that a carry signal will be generated in 

two cases: (1) when both bits ai and bi are 1, or 

 
 

Figure 5.7: 4-bit ripple carry adder 

(2) when one of the two bits is 1 and the carry-in is 1 . Thus, one can write, 

 

ci+1 = ai.bi + (ai ⊕ bi).ci 



si = (ai ⊕ bi) ⊕ ci 

 

The above two equations can be written in terms of two new signals Pi and Gi, which are shown in 

Figure 5.8: 

 

 

 

Figure 5.8: Full adder stage at i with Pi and Gi shown 

 

Where ci+1 = Gi + Pi.ci 

si = Pi ⊕ci 

`   Gi = ai.bi 

Pi = (ai ⊕ bi) 

Pi and Gi are called carry propagate and carry generate terms, respectively. Notice that the generate  

and propagate terms only depend on the input bits and thus will be valid after one and two gate  

delay, respectively. If one uses the above expression to  calculate the carry signals,  one does not 

need to wait for the  carry to ripple through all the previous stages to find its proper value. Let’s  

apply this to a 4-bit adder to make it clear. 

Putting i = 0, 1, 2, 3 in ci+1 = Gi + Pi.ci we get 

c1 = G0 + P0.c0 

c2 = G1 + P1.G0 + P1.P0.c0 

c3 = G2 + P2.G1 + P2.P1.G0 + P2.P1.P0.c0 

c4 = G3 + P3.G2 + P3.P2.G1 + P3..P2.P1.G0 + P3.P2.P1.P0.c0 

Notice that the carry-out bit, ci+1, of the last stage will be available after four delays: two gate delays to  

calculate the propagate signals and two delays as a result of the gates required  to implement 

Equation c4. 

Figure 5.9 shows that a 4-bit CLA is built using gates to generate the Pi and Gi and signals and a logic 

block to generate the carry out signals according to Equations c1 to c4. Logic gate and transistor level 

implementation of carry bits are shown in Figure 5.10 The  disadvantage  of  CLA  is  that  the  carry 

logic block gets very complicated for more than 4-bits.  For  that  reason,  CLAs  are  usually 

implemented as 4-bit modules and are used in a hierarchical structure to realize adders that  have 

multiples of 4-bits. 



 
 

Figure 5.9: 4-Bit carry lookahead adder implementation in detail 
 
 

Logic network for 4-bit CLA carry bits (b) Sum calculation using CLA network 

(c) nFET logic arrays for the CLS terms 

Figure 5.10: Carry structures of CLA 



5.1.4 Manchester carry chain 

This implementation can be very performant (20 transistors) depending on the way the  XOR 

function is built. The carry propagation of the carry is controlled by the output of the XOR gate. The  

generation of the carry is directly made by the function at the bottom. When both input signals are 1,  

then the inverse output carry is 0. In the schematic of Figure 5.11, the carry passes through a  

complete 

 

 

 
Figure 5.11: An adder element based on the pass/generate concept. 

 
 

transmission gate. If the carry path is precharged to VDD, the transmission gate is then reduced to a 

simple NMOS transistor. In the same way the PMOS transistors of the carry generation is removed.  

One gets a Manchester cell. 

 

 

 

Figure 5.12: Manchester cell 

 
 

The Manchester cell is very fast, but a large set of such cascaded cells would be slow. This is due to 

the distributed RC effect and the body effect making the propagation time grow with the square of  

the number of cells. Practically, an inverter is added every four cells, like in Figure 5.13. 



 
 

 
Figure 5.13: Cascaded Manchester carry-chain elements with buffering 

 
 

5.2 Multipliers 

In many digital signal processing operations - such as correlations, convolution, filtering, and 

frequency analysis - one needs to perform multiplication. The most basic form of multiplication  

consists of forming the product of two positive binary numbers. This may be accomplished through  

the traditional technique of successive additions and shifts, in which each addition is conditional on 

one of the multiplier bits. Here is an example. 

 

Figure 5.5: 4-bit multiplication 

The multiplication process may be viewed to consist of the following two steps: 

ˆ Evaluation of partial products. 

ˆ Accumulation of the shifted partial products. 

It should be noted that binary multiplication is equivalent to a logical AND op- eration. Thus 

evaluation of partial products consists of the logical ANDing of the multiplicand and the relevant  

multiplier bit. Each column of partial products must then be  added and, if necessary, any carry 

values passed to the next column. 

There are a number of techniques that may be used to perform multiplication. In general, the choice  

is based on factors such as speed, throughput, numerical accuracy, and area. As a rule, multipliers 

may be classified by the format in which data words are accessed, namely:- 

Parallel form 1.4.1Array Multiplication 

A parallel multiplier is based on the observation that partial products in the multi- 

plication process may be independently computed in parallel. For example, consider the unsigned 

binary integers X and Y. 



 
 

The product is found by 



Thus Pk are the partial product terms called summands. There are mn summands, which are produced in 

parallel by a set of mn AND gates. 

For 4-bit numbers, the expression above may be expanded as in the table below. 
 
 

 

Figure 5.6 

An nxn multiplier requires 

(n − 1)2full adders, 

n − 1 half adders, and 

n2 AND gates. 

The worst-case delay associated with such a multiplier is (2n + l)tg, where tg is the worst-case adder 

delay. 

Cell shown in Figure 5.16 is a cell that may be used to construct a parallel multiplier. 
 

 
 

 

 

Figure 5.16: Basic cell to construct a parallel multiplier 

 
 

The Xi term is propagated diagonally from top right to bottom left, while the yj term is propagated 

horizontally. Incoming partial products enter at the top. Incoming CARRY IN values enter at the top  

right of the cell. The bit-wise AND is performed in the cell, and the SUM is passed to the next cell  

below. The CARRY 0UT is passed to the bottom left of the cell.Figure 5.17 depicts the multiplier  

array with the partial products enumerated. 



The Multiplier can be drawn as a square array, as shown here, Figure 5.18 is the most convenient for  

implementation.In this version the degeneration of the first two rows of the multiplier are shown. The 

first row of the multiplier adders has been replaced with AND gates while the second row employs  

half-adders rather than full adders.This optimization might not be done if a completely regular  

multiplier were required (i.e. one array cell). In this case the appropriate inputs to the first and 

second row would be connected to ground, as shown in the previous slide. An adder with equal 

carry and sum propagation times is advantageous, because the worst-case multiply time depends on 

both paths. 

 
 

 
Figure 5.17: Array multiplier 

Wallace Tree Multiplication 

If the truth table for an adder, is examined, it may be seen that an adder is in effect a “one’s counter”  

that counts the number of l’s on the A, B, and C inputs and encodes them on the SUM and CARRY  

outputs. 

A l-bit adder provides a 3:2 (3 inputs, 2 outputs)compression in the number of bits. The addition of  

partial products in a column of an array multiplier may be thought of as totaling up the number of l’s  

in that column, with any carry being passed to the next column to the left. 



 
 

 
Figure 5.18: Most convenient way for implementation of array multiplier 

 
 

 
Figure 5.7 

Example for implementation of 4x4 multiplier(4-bit) using Wallace Tree Multi- plication methods 



 

 

Figure 5.7: Table to find product terms 

 
 

Considering the product P3, it may be seen that it requires the summation of four partial products and 

a possible column carry from the summation of P2. 

 

 

 

Figure 5.8: Wallace Tree Multiplication for 4-bits 

 
 

Example for implementation of 6X6 multiplier(4-bit) using Wallace Tree Multi- plication methods 

Consider the 6 x 6 multiplication table shown below. Considering the product P5, it may be seen 

that it requires the summation of six partial products and a possible column carry from the 

summation of P4. Here we can see the adders required in a multiplier based on this style of addition. 

The adders have been arranged vertically into ranks that indicate the time at which the adder output 

becomes available. While this small example shows the general Wallace  addition technique, it does not 

show the real speed advantage  of a Wallace tree. There is an identifiable “array part”, and a CPA 

part, which is at the top right. While this has been shown as a ripple-carry adder, any fast CPA 



 
 

 
Figure 1.22: 6 x 6 multiplication table 

 
 

 

 

Figure 1.23: Wallace Tree Multiplication for 6-bits 

 
 

can be used here. The delay through the array addition (not including the CPA) is proportional to 

log1.5(n), where n is the width of the Wallace tree. 

Parity generator 

1. Parity is a very useful tool in information processing in digital computers to indicate any presence of 

error in bit information. 

2. External noise and loss of signal strength cause loss of data bit information while transporting 

data from one device to other device, located inside the computer or externally. 

3. To indicate any occurrence of error, an extra bit is included with the message according to the total 

number of 1s in a set of data, which is called parity. 

4. If the extra bit is considered 0 if the total number of 1s is even and 1 for odd quantities of 1s in a set 



of data, then it is called even parity. 

5. On the other hand, if the extra bit is 1 for even quantities of 1s and 0 for an odd number of 1s, 

then it is called odd parity 

A parity generator is a combination logic system to generate the parity bit at the transmitting side. 

Table 1.1: Truth table for generating even and odd parity bit 

 
 

Four bit message 

D3D2D1D0 

Even parity Odd parity 

0000 0 1 

0001 1 0 

0010 1 0 

0011 0 1 

01000 1 0 

0101 0 1 

0110 0 1 

0111 1 0 

1000 1 0 

1001 0 1 

1010 0 1 

1011 1 0 

1100 0 1 

1101 1 0 

1110 1 0 

1111 0 1 

 

If the message bit combination is designated as, D3D2D1D0 and Pe, Po are the even and odd parity 

respectively, then it is obvious from the table that the Boolean expressions of even parity and odd 

parity are 

Pe=D3D2D1D0 
 
 

Po =(D3D2D1D0) 

The above illustration is given for a message with four bits of information. However, the logic diagrams  

can be expanded with more XOR gates for any number of bits. 



 
 

 
Figure 1.24: Even parity generator using logic gates 

 
 

 

Figure 1.25: Odd parity generator logic gates 

Zero/One detector 

Detecting all ones or zeros on wide N-bit words requires large fan-in AND or NOR gates. Recall that by 

DeMorgan’s law, AND, OR, NAND, and NOR are funda- mentally the same operation except for 

possible inversions of the inputs and/or outputs. You can build a tree of AND gates, as shown in Figure  

4.26(b). Here, alternate NAND and NOR gates have been used. The path has log N stages. 

 

 
Figure: One/zero detectors (a) All one detector (b) All zero detector (c) All zero detector transistor level 

representation 



 

Comparators 

Another common and very useful combinational logic circuit is that of the Digital Comparator  

circuit. Digital or Binary Comparators are made up from standard AND, NOR and NOT gates  

that compare the digital signals present at their input terminals and produce an output 

depending upon the condition of those inputs. 

For example, along with being able to add and subtract binary numbers we need to be able to  

compare them and determine whether the  value of input A is greater than, smaller than or  

equal to the value at input B etc. The digital comparator accomplishes this using several logic  

gates that operate on the principles of Boolean Algebra. There are two main types of Digital  

Comparator available and these are. 

Identity Comparator an Identity Comparator is a digital comparator that has only one output 

terminal for when A = B either “HIGH” A = B  = 1or “LOW” A = B = 0 

Magnitude Comparator a Magnitude Comparator is a type  of  digital  com-  parator  that  has 

three output terminals, one each for equality, A  =  B greater than,A  >  B  and less than  A  <  B 

The purpose of a Digital Comparator is to compare a set of variables or unknown numbers, for 

example A (A1, A2, A3, . An, etc) against that of a constant or unknown value such as B (B1, 

B2, B3, .  Bn, etc) and produce an output condition or flag depending upon the result of the 

comparison. For example, a magnitude comparator of two 1-bits, (A and B) inputs would produce 

the following three output conditions when compared to each other. 

A > B, A + B, A < B 

Which means: A is greater than B, A is equal to B, and A is less than B 

This is useful if we want to compare two variables and want to produce an output when any of  

the above three conditions are achieved. For example, produce an output from a counter when 

a certain count number is reached. Consider the simple 1-bit comparator below. 

Then the operation of a 1-bit digital comparator is given in the following Truth Table 
 

 
Inputs Outputs 

B A A > B A=B A < B 

0 0 0 1 0 

0 1 1 0 0 

1 0 0 0 1 

1 1 0 0 0 

From the above table the obtained expressions for magnitude comparator using K-map are as 

follows 



 
 

For A < B : C = AB 

For A = B : D = AB + AB 

For A > B : E = AB The logic diagram of 1-bit comparator using basic gates is shown bellow in 

Figure 1.24. 

 

Figure 1.27: 1-bit Digital Comparator 

 

*** Draw separate diagrams for grater, equality and less than expressions. 

Counters 

Counters can be implemented using the adder/subtractor circuits and registers (or equivalently,  

D flip- flops) 

The simplest counter circuits can be built using T flip-flops because the tog- gle feature is 

naturally suited for the implementation of the counting operation. Counters are available in two 

categories 

6. Asynchronous(Ripple counters) Asynchronous counters, also known as ripple counters,  

are not clocked by a common pulse and hence every flip-flop in the counter changes at 

different times. The flip-flops in an asynchronous counter is usually clocked by the output 

pulse of the preceding flip-flop.The first flip-flop is clocked by an external event. 

The flip-flop output transition serves as a source for triggering other flip-flops 

i.e the C input (clock input) of some or all flip-flops are triggered NOT by the common clock 

pulses Eg:- Binary ripple counters, BCD ripple counters 

Synchronous counters A synchronous counter however, has an internal clock, and the 

external event is used to produce a pulse which is synchronized with this internal 

clock. 

C input (clock input) of all flip-flops receive the common clock pulses 

E.g.:- Binary counter, Up-down Binary counter, BCD Binary counter, Ring counter, Johnson 

counter, 

Asynchronous Up-Counter with T Flip-Flops 

Figure shows a 3-bit counter capable of counting from 0 to 7. The clock inputs of the three flip-

flops are connected in cascade. The T input of each flip- flop is connected to a constant 1, which 

means that the state of the flip-flop will be toggled at each active edge (here, it is 



positive edge) of its clock. We assume that the purpose of this circuit is to count the number of 

pulses that occur on the primary input called Clock. Thus the clock input of the first flip-flop is 

connected   to the Clock line. The other two flip-flops have their clock inputs driven by the Q 

output of the preceding flip-flop. Therefore, they toggle their states whenever the preceding flip- 

flop changes its state from Q = 1 to Q = 0, which results in a positive edge of the Q signal. 

 

 
Figure: A 3-bit up-counter. 

Note here the value of the count is the indicated by the 3-bit binary number Q2Q1Q0. Since the 

second flip-flop is clocked by Q0 , the value of  Q1  changes shortly after the change of the Q0 

signal. Similarly, the value of Q2 changes shortly after the change of the Q1 signal. This circuit is a 

modulo-8 counter. Because it counts in the upward direction, we call it an up-counter. This 

behavior is similar  to the rippling of carries in a ripple-carry adder. The circuit is therefore called 

an asynchronous counter, or a ripple counter. 

Asynchronous Down-Counter with T Flip-Flops 

Some modifications of the circuit in Figure 4.29 lead to a down-counter which counts in the 

sequence 0, 7, 6, 5, 4, 3, 2, 1, 0, 7, and so on.  The modified circuit   is shown in Figure 3. 

Here the clock inputs of the second and third flip-flops are driven by the Q outputs of the 

preceding stages, rather than by the Q outputs. 

 

 
Figure: A 3-bit down-counter. 

Although the asynchronous counter is easier to construct, it has some major disadvantages 

over the synchronous counter. 

First of all, the asynchronous counter is slow. In a synchronous counter, all the flip-flops will 

change states simultaneously while for an asynchronous counter, the propagation delays of the  

flip-flops add together  to produce the  overall delay. Hence, the more bits or number of flip -flops 

in an asynchronous counter, the slower it will be. 

Secondly, there are certain ”risks” when using an asynchronous counter.   In    a complex 



system, many state changes occur on each clock edge and some ICs respond faster than others. 

If an external event is allowed to affect a system whenever it occurs (unsynchronized), there is  

a small chance that it will occur near a clock transition, after some IC’s have responded, but  

before others have. This intermingling of transitions often causes erroneous  operations. And 

the worse this is that these problems are difficult to foresee and test for because of the random  

time difference between the events. 

Synchronous Counters: 

A synchronous counter usually consists of two parts: the memory element and the 

combinational element. The memory element is implemented using flip-flops while the 

combinational element can be implemented in a number of ways. Using logic gates is the  

traditional method of implementing combinational logic and has been applied for decades. 

Synchronous Up-Counter with T Flip-Flops 

An example of a 4-bit synchronous up-counter is shown in Figure 5.Observing the 
 
 

 
Figure A 4bit synchronous upcounter 

 
 

 

 
Figure: Contents of a 4bit upcounter for 16 consecutive clock cycles 

pattern of bits in each row of the table, it is apparent that bit Q0 changes on each clock cycle. 

Bit QQ1 changes only when Q0 = 1. Bit Q2 changes only when both Q1 and Q0 are equal to 1. 



Bit Q3 changes only when Q2 = Q1 = Q0 = 1. In general, for an n-bit up-counter, a give flip- 

flop changes its state only when all the preceding flip-flops are in the state Q = 1. Therefore, if 

we use T flip-flops to realize the 4-bit counter, then the T inputs should be defined as 

 
T0 = 1 

T1 = Q0 

T2 = Q0Q1 

T3 = Q0Q1Q2 

In Figure 5, instead of using AND gates of increased size for each stage, we use a factored  

arrangement. This arrangement does not slow down the response of the 

counter, because all flip-flops change their states after a propagation delay from the positive 

edge of the clock. Note that a change in the value of Q0 may have to propagate through several  

AND gates to reach the flip-flops in the higher stages of the counter, which requires a certain 

amount of time. This time must not exceed the clock period. Actually, it must be 3less than the  

clock period minus the setup time of the flip-flops. It shows that the circuit behaves as a 

modulo-16 up-counter. Because all changes take place with the same delay after the active 

edge of the Clock signal, the circuit is called a synchronous counter. 

Figure 1.32: Design of synchronous counter using adders and registers 

Static Latches and Registers 
 
 



The Bistability Principle: 

Static memories use positive feedback to create a bistable circuit — a circuit having two stable states that 

represent 0 and 1. The basic idea is shown in Figure 7.4a, which shows two inverters connected in cascade 

along with a voltage-transfer characteristic typical of such a circuit. Also plotted are the VTCs of the first 

inverter, that is, Vo1 versus Vi1, and the second inverter (Vo2 versus Vo1). The latter plot is rotated to 

accentuate that Vi2 =V o1. Assume now that the output of the second inverter Vo2 is connected to the input 

of the first Vi1, as shown by the dotted lines in Figure 7.4a. The resulting circuit has only three possible 

operation points (A, B, and C), as demonstrated on the combined VTC. The following important conjecture is 

easily proven to be valid: 

 

 

 

Under the condition that the gain of the inverter in the transient region is larger than 1, only Aand B are 

stable operation points, and C is a metastable operation point. 

SR Flip-Flops 

The cross-coupled inverter pair shown in the previous section provides an approach to store a binary variable 

in a stable way. However, extra circuitry must be added to enable control of the memory states. The 

wellknow SR —or set-reset— flip-flop, an implementation of which is shown in Figure 7.6a. This circuit is 

similar to the cross-coupled inverter pair with NOR gates replacing the inverters. The second input of the 

NOR gates is connected to the trigger inputs (S and R),that make it possible to force the outputs Q and Q to a 

given state. These outputs are complimentary (except for the SR = 11 state). When both S and R are 0, the 

flip-flop is in a quiescent state and both outputs retain their value (a NOR gate with one of its input being 0 



looks like an inverter, and the structure looks like a cross coupled inverter). If a positive (or 1) pulse is 

applied to the S input, the Q output is forced into the 1 state (with Q going to 0). Vice versa, a 1 pulse on R 

resets the flip-flop and the Q output goes to 0. 

 
 

These results are summarized in the characteristic table of the flip-flop, shown in Figure 7.6c. The 

characteristic table is the truth table of the gate and lists the output states as functions of all possible input 

conditions. When both S and R are high, both Q and    are forced to zero. Since this does not correspond 

with our constraint that Q and Q must be complementary, this input mode is considered to be forbidden. An 

additional problem with this condition is that when the input triggers return to their zero levels, the resulting 

state of the latch is unpredictable and depends on whatever input is last to go low. Finally, Figure 7.6 shows 

the schematics symbol of the SR flip-flop. The SR flip-flops discussed so far are asynchronous, and do not 

require a clock signal. Most systems operate in a synchronous fashion with transition events referenced to a 

clock. One possible realization of a clocked SR flip-flop— a level-sensitive positive latch— is shown in 

Figure 7.8. 

It consists of a cross-coupled inverter pair, plus 4 extra transistors to drive the flip-flop from one state to 



another and to provide clocked operation. Observe that the number of transistors is identical to the 

implementation of Figure 7.6, but the circuit has the added feature of being clocked. The drawback of saving 

some transistors over a fully-complimentary CMOS implementation is that transistor sizing becomes critical 

in ensuring proper functionality. Consider the case where Q is high and an R pulse is applied. The 

combination of transistors M4, M7, and M8 forms a ratioed inverter. In order to make the latch switch, we 

must succeed in bringing Q below the switching threshold of the inverter M1-M2. Once this is achieved, the 

positive feedback causes the flip-flop to invert states. This requirement forces us to increase the sizes of 

transistors M5, M6, M7, and M8. 

Multiplexer-Based Latches 

There are many approaches for constructing latches. One very common technique involves the use of 

transmission gate multiplexers. Multiplexer based latches can provide similar functionality to the SR latch, 

but has the important added advantage that the sizing of devices only affects performance and is not critical 

to the functionality. 

Figure 7.11 shows an implementation of static positive and negative latches based on multiplexers. For a 

negative latch, when the clock signal is low, the input 0 of the multiplexer is selected, and the D input is 

passed to the output. When the clock signal is high,the input 1 of the multiplexer, which connects to the 

output of the latch, is selected. The feedback holds the output stable while the clock signal is high. Similarly 

in the positive latch, the D input is selected when clock is high, and the output is held (using feedback) when 

clock is low. 

A transistor level implementation of a positive latch based on multiplexers is shown in Figure 7.12. When 

CLK is high, the bottom transmission gate is on and the latch is 
 

 

 

transparent - that is, the D input is copied to the Q output. During this phase, the feedback loop is open since 

the top transmission gate is off. Unlike the SR FF, the feedback does not have to be overridden to write the 

memory and hence sizing of transistors is not critical for realizing correct functionality. The number of 

transistors that the clock touches is important since it has an activity factor of 1. This particular latch 

implementation is not particularly efficient from this metric as it presents a load of 4 transistors to the CLK 

signal. 



 

It is possible to reduce the clock load to two transistors by using implement multiplexers using NMOS only 

pass transistor as shown in Figure 7.13. The advantage of this approach is the reduced clock load of only two 

NMOS devices. When CLK is high, the latch samples the D input, while a low clock-signal enables the 

feedback-loop, and puts the latch in the hold mode. While attractive for its simplicity, the use of NMOS only 

pass transistors results in the passing of a degraded high voltage of VDD-VTn to the input of the first 

inverter. This impacts both noise margin and the switching performance, especially in the case of low values 

of VDD and high values of VTn. It also causes static power dissipation in first inverter, as already pointed out 

in Chapter 6. Since the maximum input-voltage to the inverter equals VDD-VTn, the PMOS device of the 

inverter is never turned off, 

resulting is a static current flow. 

Master-Slave Edge-Triggered Register 

The most common approach for constructing an edge-triggered register is to use a masterslave 

configuration, as shown in Figure 7.14. The register consists of cascading a negative latch (master stage) 

with a positive latch (slave stage). A multiplexer-based latch is used in this particular implementation, 

although any latch could be used. On the low phase of the clock, the master stage is transparent, and the D 

input is passed to the master stage output, using feedback. 

 

 

On the rising edge of the clock, the master slave stops sampling the input, and the slave stage starts 

sampling. During the high phase of the clock, the slave stage samples the output of the master stage (QM), 

while the master stage remains in a hold mode. Since QM is constant during the high phase of the clock, the 

output Q makes only one transition per cycle. The value of Q is the value of D right before the rising edge of 

the clock, achieving the positive edge-triggered effect. A negative edge-triggered register can be constructed 



using the same principle by simply switching the order of the 
 

 
 

positive and negative latch (this is, placing the positive latch first). A complete transistor-level 

implementation of a the master-slave positive edge-triggered register is shown in Figure 7.15. The 

multiplexer is implemented using transmission gates as discussed in the previous section. When the clock is 

low (CLK = 1), T1 is on and T2 is off, and the D input is sampled onto node QM. During this period, T3 is off 

and T4 is on and the cross-coupled inverters (I5, I6) holds the state of the slave latch. When the clock goes 

high, the master stage stops sampling the input and goes into a hold mode. T1 is off and T2 is on, and the 

cross coupled inverters I3 and I4 holds the state of QM. Also, T3 is on 

and T4 is off, and QM is copied to the output Q. 

Dynamic Latches and Registers 

Storage in a static sequential circuit relies on the concept that a cross-coupled inverter pair produces a 

bistable element and can thus be used to memorize binary values. This approach has the useful property that 

a stored value remains valid as long as the supply voltage is applied to the circuit, hence the name static. The 

major disadvantage of the static gate, however, is its complexity. This results in a class of circuits based on 

temporary storage of charge on parasitic capacitors.The principle is exactly identical to the one used in 

dynamic logic — charge stored on a capacitor can be used to represent a logic signal. The absence of charge 

denotes a 0, while its presence stands for a stored 1. No capacitor is ideal, unfortunately, and some charge 

leakage is always present. 

Dynamic Transmission-Gate Edge-triggered Registers 

A fully dynamic positive edge-triggered register based on the master-slave concept is shown in Figure 7.24. 

When CLK = 0, the input data is sampled on storage node 1, which has an equivalent capacitance of C1 

consisting of the gate capacitance of I1, the junction capacitance of T1, and the overlap gate capacitance of 

T1. During this period, the slave stage is in a hold mode, with node 2 in a high-impedance (floating) state. 

On the rising edge of clock, the transmission gate T2 turns on, and the value sampled on node 1 right before 

the rising edge propagates to the output Q (note that node 1 is stable during the high phase of the clock since 

the first transmission gate is turned off). Node 2 now stores the inverted version of node 1. This 

implementation of an edge-triggered register is very efficient as it requires only 8 transistors. The sampling 

switches can be implemented using NMOS-only pass transistors, resulting in an even-simpler 6 transistor 



implementation. The reduced transistor count is attractive for high-performance and low-power systems. The 

set-up time of this circuit is simply the delay of the transmission gate, and corresponds to the time it takes 

node 1 to sample the D input. The hold time is approximately zero, since the transmission gate is turned off 

on the clock edge and further inputs changes are ignored. The propagation delay (tc-q) is equal to two 

inverter delays plus the delay of the transmission gate T2.One important consideration for such a dynamic 

register is that the storage nodes (i.e., the state) has to be refreshed at periodic intervals to prevent a loss due 

to charge leakage,due to diode leakage as well as sub-threshold currents. In datapath circuits, the refresh rate 

is not an issue since the registers are periodically clocked, and the storage nodes are constantly 

updated.Clock overlap is an important concern for this register. Consider the clock waveforms 

shown in Figure 7.25. During the 0-0 overlap period, the NMOS of T1 and the PMOS of T2 are 

simultaneously on, creating a direct path for data to flow from the D input of the register to the Q output. 

This is known as a race condition. The output Q can changeon the falling edge if the overlap period is large 

— obviously an undesirable effect for a positive edge-triggered register. 
 

 

 

 

 

The same is true for the 1-1 overlap region, where an input-output path exists through the PMOS of T1 and 

the NMOS of T2. The latter case is taken care off by enforcing a hold time constraint. That is, the data must 

be stable during the high-high overlap period. The former situation (0-0 overlap) can be addressed by 

making sure that there is enough delay between the D input and node 2 ensuring that new data sampled by 

the master stage does not propagate through to the slave stage. Generally the 

built in single inverter delay should be sufficient and the overlap period constraint is given 

as: The set-up time of this circuit is simply the delay of the transmission gate, and corresponds 

to the time it takes node 1 to sample the D input. The hold time is approximately 

zero, since the transmission gate is turned off on the clock edge and further inputs changes 

are ignored. The propagation delay (tc-q) is equal to two inverter delays plus the delay of 

the transmission gate T2. 

One important consideration for such a dynamic register is that the storage nodes 

(i.e., the state) has to be refreshed at periodic intervals to prevent a loss due to charge leakage, 

due to diode leakage as well as sub-threshold currents. In datapath circuits, the refresh 

rate is not an issue since the registers are periodically clocked, and the storage nodes are 

constantly updated. 

Clock overlap is an important concern for this register. Consider the clock waveforms 



shown in Figure 7.25. During the 0-0 overlap period, the NMOS of T1 and the 

PMOS of T2 are simultaneously on, creating a direct path for data to flow from the D input 

of the register to the Q output. This is known as a race condition. The output Q can change 

on the falling edge if the overlap period is large — obviously an undesirable effect for a 

positive edge-triggered register. The same is true for the 1-1 overlap region, where an 

input-output path exists through the PMOS of T1 and the NMOS of T2. The latter case is 

taken care off by enforcing a hold time constraint. That is, the data must be stable during 

the high-high overlap period. The former situation (0-0 overlap) can be addressed by making 

sure that there is enough delay between the D input and node 2 ensuring that new data 

sampled by the master stage does not propagate through to the slave stage. Generally the 

built in single inverter delay should be sufficient and the overlap period constraint is given 

as: 

toverlap 0-0 < tT1+tI1+tT2 

 
 

 

The C2MOS Register 

Figure 7.26 shows an ingenious positive edge-triggered register, based on a master-slave 

concept insensitive to clock overlap. This circuit is called the C2MOS (Clocked CMOS) 

register [Suzuki73], and operates in two phases. 

 



1. CLK = 0 (CLK = 1): The first tri-state driver is turned on, and the master stage acts as an inverter sampling 

the inverted version of D on the internal node X. The master stage is in the evaluation mode. Meanwhile, the 

slave section is in a high-impedance mode, or in a hold mode. Both transistors M7 and M8 are off, 

decoupling the output from the input. The output Q retains its previous value stored on the output capacitor 

CL2. 

2. The roles are reversed when CLK = 1: The master stage section is in hold mode (M3-M4 off), while the 

second section evaluates (M7-M8 on). The value stored on CL1propagates to the output node through the 

slave stage which acts as an inverter. 
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